{"title":"基于量子认知模型的概念组合视觉创意","authors":"Mozhdeh Ahrabi Tabriz, Tayebe Rafiei Atani, Mehrdad Ashtiani, Mohammad Reza Jahed-Motlagh","doi":"10.24200/sci.2023.61494.7340","DOIUrl":null,"url":null,"abstract":"Computational creativity modeling, including concept combination, enables us to foster deeper abilities of AI agents. Although concept combination has been addressed in a lot of computational creativity studies, findings show incompatibility amongst empirical data of concept combination and the results of the used methods. In addition, even though recent neuroscientific studies show the crucial impact of retrieving concepts’ relations explicitly stored in episodic memory, it has been underestimated in modeling creative processes. In this paper, a quantum cognition-based approach is used to more effectively consider the context and resolve logical inconsistencies. Also, episodic memory is leveraged as the basis for the concept combination modeling process based on the created context. The result of the proposed process is a set of meaningful concepts and expressions as a combination of stimuli and related episodes which are used to depict a visual collage as an image. The significant improvement in the quality of results in comparison with the existing methods suggests that quantum-like modeling can be considered as the foundation for developing AI agents capable of creating artistic images or assisting a person during a creative process.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Creativity through Concept Combination Using Quantum Cognitive Models\",\"authors\":\"Mozhdeh Ahrabi Tabriz, Tayebe Rafiei Atani, Mehrdad Ashtiani, Mohammad Reza Jahed-Motlagh\",\"doi\":\"10.24200/sci.2023.61494.7340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational creativity modeling, including concept combination, enables us to foster deeper abilities of AI agents. Although concept combination has been addressed in a lot of computational creativity studies, findings show incompatibility amongst empirical data of concept combination and the results of the used methods. In addition, even though recent neuroscientific studies show the crucial impact of retrieving concepts’ relations explicitly stored in episodic memory, it has been underestimated in modeling creative processes. In this paper, a quantum cognition-based approach is used to more effectively consider the context and resolve logical inconsistencies. Also, episodic memory is leveraged as the basis for the concept combination modeling process based on the created context. The result of the proposed process is a set of meaningful concepts and expressions as a combination of stimuli and related episodes which are used to depict a visual collage as an image. The significant improvement in the quality of results in comparison with the existing methods suggests that quantum-like modeling can be considered as the foundation for developing AI agents capable of creating artistic images or assisting a person during a creative process.\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.61494.7340\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.61494.7340","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Visual Creativity through Concept Combination Using Quantum Cognitive Models
Computational creativity modeling, including concept combination, enables us to foster deeper abilities of AI agents. Although concept combination has been addressed in a lot of computational creativity studies, findings show incompatibility amongst empirical data of concept combination and the results of the used methods. In addition, even though recent neuroscientific studies show the crucial impact of retrieving concepts’ relations explicitly stored in episodic memory, it has been underestimated in modeling creative processes. In this paper, a quantum cognition-based approach is used to more effectively consider the context and resolve logical inconsistencies. Also, episodic memory is leveraged as the basis for the concept combination modeling process based on the created context. The result of the proposed process is a set of meaningful concepts and expressions as a combination of stimuli and related episodes which are used to depict a visual collage as an image. The significant improvement in the quality of results in comparison with the existing methods suggests that quantum-like modeling can be considered as the foundation for developing AI agents capable of creating artistic images or assisting a person during a creative process.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.