废磨轮胎橡胶热解动力学机制的研究进展

IF 1.2 Q4 ENGINEERING, ENVIRONMENTAL Detritus Pub Date : 2023-09-30 DOI:10.31025/2611-4135/2023.18315
Maxwell Katambwa Mwelwa, Samuel Ayodele Iwarere, Ntandoyenkosi Malusi Mkhize
{"title":"废磨轮胎橡胶热解动力学机制的研究进展","authors":"Maxwell Katambwa Mwelwa, Samuel Ayodele Iwarere, Ntandoyenkosi Malusi Mkhize","doi":"10.31025/2611-4135/2023.18315","DOIUrl":null,"url":null,"abstract":"The depletion of natural resources and the need to reduce solid waste in urban areas have necessitated the incorporation of used materials such as waste ground tyre rubbers (WGTR), into manufacturing processes. As a result, techniques and recycling methods have been established to use tyres as feedstock for marketable products since tyres have a calorific value higher than coal and contain a significant amount of carbon black. Among several techniques, pyrolysis has emerged as the most appealing for treating WGTRs. This technique allows the recovery of valuable products like combustible gases, fuels and chemicals, and activated carbon. Studies have focused on understanding the mechanism underlying the WGTR pyrolysis through the establishment of mathematical models and reaction patterns to valorise WGTRs and efficiently produce marketable chemicals. This paper presents an overview of recent developments in understanding WGTR pyrolysis mechanisms. A general mechanism observed involves a first depolymerisation/condensation of the rubbers, then a degradation of the condensed products, and finally a devolatilisation of additives. Based on the limited information available on the chemicals' formation mechanism, it is assumed that limonene and isoprene are derived from natural rubber (NR), through a series of β-scission and depropagation reactions of polyisoprene and intramolecular cyclisation and scission of monomeric isoprene, respectively, with an equilibrium step of Diels-Alder reaction. The maximum yield of limonene and isoprene have been found to be 51% and 20.5% at temperature around 500°C respectively. The isoprene yield can be increased up to 37.57 % with the use of catalyst such as Calcium Oxide.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in understanding kinetic mechanisms underlying waste ground tyre rubber pyrolysis\",\"authors\":\"Maxwell Katambwa Mwelwa, Samuel Ayodele Iwarere, Ntandoyenkosi Malusi Mkhize\",\"doi\":\"10.31025/2611-4135/2023.18315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The depletion of natural resources and the need to reduce solid waste in urban areas have necessitated the incorporation of used materials such as waste ground tyre rubbers (WGTR), into manufacturing processes. As a result, techniques and recycling methods have been established to use tyres as feedstock for marketable products since tyres have a calorific value higher than coal and contain a significant amount of carbon black. Among several techniques, pyrolysis has emerged as the most appealing for treating WGTRs. This technique allows the recovery of valuable products like combustible gases, fuels and chemicals, and activated carbon. Studies have focused on understanding the mechanism underlying the WGTR pyrolysis through the establishment of mathematical models and reaction patterns to valorise WGTRs and efficiently produce marketable chemicals. This paper presents an overview of recent developments in understanding WGTR pyrolysis mechanisms. A general mechanism observed involves a first depolymerisation/condensation of the rubbers, then a degradation of the condensed products, and finally a devolatilisation of additives. Based on the limited information available on the chemicals' formation mechanism, it is assumed that limonene and isoprene are derived from natural rubber (NR), through a series of β-scission and depropagation reactions of polyisoprene and intramolecular cyclisation and scission of monomeric isoprene, respectively, with an equilibrium step of Diels-Alder reaction. The maximum yield of limonene and isoprene have been found to be 51% and 20.5% at temperature around 500°C respectively. The isoprene yield can be increased up to 37.57 % with the use of catalyst such as Calcium Oxide.\",\"PeriodicalId\":44191,\"journal\":{\"name\":\"Detritus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Detritus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31025/2611-4135/2023.18315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2023.18315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于自然资源的枯竭和需要减少城市地区的固体废物,因此必须将废旧材料,如废旧磨碎轮胎橡胶纳入制造过程。因此,已经建立了使用轮胎作为可销售产品的原料的技术和回收方法,因为轮胎的热值比煤高,并且含有大量的炭黑。在几种技术中,热解已成为处理wgtr的最具吸引力的技术。这项技术可以回收有价值的产品,如可燃气体、燃料和化学品以及活性炭。研究的重点是通过建立数学模型和反应模式来了解WGTR热解的机理,以提高WGTR的价值,有效地生产适销化学品。本文介绍了WGTR热解机理的最新研究进展。观察到的一般机理包括橡胶的首先解聚/缩聚,然后是缩聚产物的降解,最后是添加剂的脱挥发。基于有限的化学物质形成机理信息,我们假设柠檬烯和异戊二烯分别来源于天然橡胶(NR),经过一系列聚异戊二烯的β-裂解和去增殖反应,以及单体异戊二烯的分子内环化和裂解反应,并经过Diels-Alder反应的平衡步骤。在500℃左右的温度下,柠檬烯和异戊二烯的最大收率分别为51%和20.5%。使用氧化钙等催化剂,异戊二烯收率可提高到37.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in understanding kinetic mechanisms underlying waste ground tyre rubber pyrolysis
The depletion of natural resources and the need to reduce solid waste in urban areas have necessitated the incorporation of used materials such as waste ground tyre rubbers (WGTR), into manufacturing processes. As a result, techniques and recycling methods have been established to use tyres as feedstock for marketable products since tyres have a calorific value higher than coal and contain a significant amount of carbon black. Among several techniques, pyrolysis has emerged as the most appealing for treating WGTRs. This technique allows the recovery of valuable products like combustible gases, fuels and chemicals, and activated carbon. Studies have focused on understanding the mechanism underlying the WGTR pyrolysis through the establishment of mathematical models and reaction patterns to valorise WGTRs and efficiently produce marketable chemicals. This paper presents an overview of recent developments in understanding WGTR pyrolysis mechanisms. A general mechanism observed involves a first depolymerisation/condensation of the rubbers, then a degradation of the condensed products, and finally a devolatilisation of additives. Based on the limited information available on the chemicals' formation mechanism, it is assumed that limonene and isoprene are derived from natural rubber (NR), through a series of β-scission and depropagation reactions of polyisoprene and intramolecular cyclisation and scission of monomeric isoprene, respectively, with an equilibrium step of Diels-Alder reaction. The maximum yield of limonene and isoprene have been found to be 51% and 20.5% at temperature around 500°C respectively. The isoprene yield can be increased up to 37.57 % with the use of catalyst such as Calcium Oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Detritus
Detritus ENGINEERING, ENVIRONMENTAL-
CiteScore
3.30
自引率
23.50%
发文量
45
审稿时长
15 weeks
期刊最新文献
CIRCULAR ECONOMY: AN HONEST APPROACH BOOKS REVIEW Detritus & Art THE PRESENCE OF PFAS IN WASTES AND RELATED IMPLICATIONS ON THE CURRENT AND PROPOSED EUROPEAN REGULATORY FRAMEWORK: A SYSTEMATIC CRITICAL REVIEW WASTE EGGSHELLS AS CATALYSTS: AN ENVIRONMENTALLY-FRIENDLY APPROACH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1