利用智能卡数据识别人类移动模式

IF 9.5 1区 工程技术 Q1 TRANSPORTATION Transport Reviews Pub Date : 2024-01-02 DOI:10.1080/01441647.2023.2251688
Oded Cats
{"title":"利用智能卡数据识别人类移动模式","authors":"Oded Cats","doi":"10.1080/01441647.2023.2251688","DOIUrl":null,"url":null,"abstract":"<div><p>Human mobility is subject to collective dynamics that are the outcome of numerous individual choices. Smart card data which originated as a means of facilitating automated fare collection has emerged as an invaluable source for analysing mobility patterns. A variety of clustering and segmentation techniques has been adopted and adapted for applications ranging from market segmentation to the analysis of urban activity locations. In this paper we provide a systematic review of the state-of-the-art on clustering public transport users based on their temporal or spatial-temporal characteristics as well as studies that use the latter to characterise individual stations, lines or urban areas. Furthermore, a critical review of the literature reveals an important distinction between studies focusing on the intra-personal variability of travel patterns versus those concerned with the inter-personal variability of travel patterns. We synthesise the key analysis approaches as well as substantive findings and subsequently identify common trends and shortcomings and outline related directions for further research.</p></div>","PeriodicalId":48197,"journal":{"name":"Transport Reviews","volume":"44 1","pages":"Pages 213-243"},"PeriodicalIF":9.5000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying human mobility patterns using smart card data\",\"authors\":\"Oded Cats\",\"doi\":\"10.1080/01441647.2023.2251688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human mobility is subject to collective dynamics that are the outcome of numerous individual choices. Smart card data which originated as a means of facilitating automated fare collection has emerged as an invaluable source for analysing mobility patterns. A variety of clustering and segmentation techniques has been adopted and adapted for applications ranging from market segmentation to the analysis of urban activity locations. In this paper we provide a systematic review of the state-of-the-art on clustering public transport users based on their temporal or spatial-temporal characteristics as well as studies that use the latter to characterise individual stations, lines or urban areas. Furthermore, a critical review of the literature reveals an important distinction between studies focusing on the intra-personal variability of travel patterns versus those concerned with the inter-personal variability of travel patterns. We synthesise the key analysis approaches as well as substantive findings and subsequently identify common trends and shortcomings and outline related directions for further research.</p></div>\",\"PeriodicalId\":48197,\"journal\":{\"name\":\"Transport Reviews\",\"volume\":\"44 1\",\"pages\":\"Pages 213-243\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0144164723000946\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Reviews","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0144164723000946","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

人的流动受制于众多个人选择所产生的集体动力。智能卡数据起源于一种方便自动收费的手段,现已成为分析流动模式的宝贵来源。从市场细分到城市活动地点分析,各种聚类和细分技术已被广泛采用和应用。在本文中,我们系统回顾了根据时间或空间-时间特征对公共交通用户进行聚类的最新研究成果,以及利用后者描述单个车站、线路或城市区域特征的研究。此外,对文献的批判性回顾还揭示了关注出行模式的人内变异性与关注出行模式的人际变异性的研究之间的重要区别。我们综合了主要分析方法和实质性研究结果,随后指出了共同的趋势和不足之处,并概述了进一步研究的相关方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying human mobility patterns using smart card data

Human mobility is subject to collective dynamics that are the outcome of numerous individual choices. Smart card data which originated as a means of facilitating automated fare collection has emerged as an invaluable source for analysing mobility patterns. A variety of clustering and segmentation techniques has been adopted and adapted for applications ranging from market segmentation to the analysis of urban activity locations. In this paper we provide a systematic review of the state-of-the-art on clustering public transport users based on their temporal or spatial-temporal characteristics as well as studies that use the latter to characterise individual stations, lines or urban areas. Furthermore, a critical review of the literature reveals an important distinction between studies focusing on the intra-personal variability of travel patterns versus those concerned with the inter-personal variability of travel patterns. We synthesise the key analysis approaches as well as substantive findings and subsequently identify common trends and shortcomings and outline related directions for further research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Reviews
Transport Reviews TRANSPORTATION-
CiteScore
17.70
自引率
1.00%
发文量
32
期刊介绍: Transport Reviews is an international journal that comprehensively covers all aspects of transportation. It offers authoritative and current research-based reviews on transportation-related topics, catering to a knowledgeable audience while also being accessible to a wide readership. Encouraging submissions from diverse disciplinary perspectives such as economics and engineering, as well as various subject areas like social issues and the environment, Transport Reviews welcomes contributions employing different methodological approaches, including modeling, qualitative methods, or mixed-methods. The reviews typically introduce new methodologies, analyses, innovative viewpoints, and original data, although they are not limited to research-based content.
期刊最新文献
Forecasting travel in urban America: the socio-technical life of an engineering modeling world Spatial factors associated with usage of different on-demand elements within mobility hubs: a systematic literature review Measuring transport-associated urban inequalities: Where are we and where do we go from here? Human factors affecting truck – vulnerable road user safety: a scoping review A survey on reinforcement learning-based control for signalized intersections with connected automated vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1