Xuan Liu, Hongmin Lu, Yifeng He, Fulin Wu, Chengxi Zhang, Xiaoliang Wang
{"title":"相位噪声对卫星通信测量系统性能的影响分析","authors":"Xuan Liu, Hongmin Lu, Yifeng He, Fulin Wu, Chengxi Zhang, Xiaoliang Wang","doi":"10.3390/sym15112053","DOIUrl":null,"url":null,"abstract":"An oscillator is a key component of a satellite communication measurement and control system, performing symmetry precisely as a time frequency reference. At the same time, the phase noise index has a close coupling relationship with the overall performance of the entire system, while persistently breaking the symmetry property of the oscillator during work. It is very important to study and reasonably allocate the phase noise index. According to the theoretical formula of phase noise, this paper analyzes the power law spectral model in the frequency domain and the noise jitter characteristics in the time domain. Using the carrier tracking loop in the measurement system, the frequency domain transfer model of phase noise is established, and typical analysis results are given. A discrete fractional integration algorithm is proposed, which can generate the phase noise time domain sequence under the given power law spectral model coefficients. The proposed algorithm is more realistic compared with the previous numerical calculation method, and has sufficient accuracy compared with the results of the instrument. After frequency domain conversion, the RMS deviation between the simulated noise sequence in the frequency domain and the measured single sideband power spectral density is less than 2.5 dB, indicating that the phase noise sequence can reflect the frequency domain characteristics more completely. A communication measurement simulation system is built, and a discrete sequence simulation analysis method combining frequency domain and time domain is provided, and the coupling relationship of key indicators such as phase noise, thermal noise, communication data rate, modulation method and bit error rate is synthesized. The results show that the BER of the QPSK/BPSK communication system will not be significantly reduced if the phase jitter RMS caused by the phase noise is less than 5 degrees, so 5 degrees can be used as a reference for the decomposition of the carrier SSB phase noise index. The simulation results have been successfully applied to a satellite inter-satellite link system, which has universal practical application value.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on the Effect of Phase Noise on the Performance of Satellite Communication and Measurement System\",\"authors\":\"Xuan Liu, Hongmin Lu, Yifeng He, Fulin Wu, Chengxi Zhang, Xiaoliang Wang\",\"doi\":\"10.3390/sym15112053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An oscillator is a key component of a satellite communication measurement and control system, performing symmetry precisely as a time frequency reference. At the same time, the phase noise index has a close coupling relationship with the overall performance of the entire system, while persistently breaking the symmetry property of the oscillator during work. It is very important to study and reasonably allocate the phase noise index. According to the theoretical formula of phase noise, this paper analyzes the power law spectral model in the frequency domain and the noise jitter characteristics in the time domain. Using the carrier tracking loop in the measurement system, the frequency domain transfer model of phase noise is established, and typical analysis results are given. A discrete fractional integration algorithm is proposed, which can generate the phase noise time domain sequence under the given power law spectral model coefficients. The proposed algorithm is more realistic compared with the previous numerical calculation method, and has sufficient accuracy compared with the results of the instrument. After frequency domain conversion, the RMS deviation between the simulated noise sequence in the frequency domain and the measured single sideband power spectral density is less than 2.5 dB, indicating that the phase noise sequence can reflect the frequency domain characteristics more completely. A communication measurement simulation system is built, and a discrete sequence simulation analysis method combining frequency domain and time domain is provided, and the coupling relationship of key indicators such as phase noise, thermal noise, communication data rate, modulation method and bit error rate is synthesized. The results show that the BER of the QPSK/BPSK communication system will not be significantly reduced if the phase jitter RMS caused by the phase noise is less than 5 degrees, so 5 degrees can be used as a reference for the decomposition of the carrier SSB phase noise index. The simulation results have been successfully applied to a satellite inter-satellite link system, which has universal practical application value.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112053\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112053","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Analysis on the Effect of Phase Noise on the Performance of Satellite Communication and Measurement System
An oscillator is a key component of a satellite communication measurement and control system, performing symmetry precisely as a time frequency reference. At the same time, the phase noise index has a close coupling relationship with the overall performance of the entire system, while persistently breaking the symmetry property of the oscillator during work. It is very important to study and reasonably allocate the phase noise index. According to the theoretical formula of phase noise, this paper analyzes the power law spectral model in the frequency domain and the noise jitter characteristics in the time domain. Using the carrier tracking loop in the measurement system, the frequency domain transfer model of phase noise is established, and typical analysis results are given. A discrete fractional integration algorithm is proposed, which can generate the phase noise time domain sequence under the given power law spectral model coefficients. The proposed algorithm is more realistic compared with the previous numerical calculation method, and has sufficient accuracy compared with the results of the instrument. After frequency domain conversion, the RMS deviation between the simulated noise sequence in the frequency domain and the measured single sideband power spectral density is less than 2.5 dB, indicating that the phase noise sequence can reflect the frequency domain characteristics more completely. A communication measurement simulation system is built, and a discrete sequence simulation analysis method combining frequency domain and time domain is provided, and the coupling relationship of key indicators such as phase noise, thermal noise, communication data rate, modulation method and bit error rate is synthesized. The results show that the BER of the QPSK/BPSK communication system will not be significantly reduced if the phase jitter RMS caused by the phase noise is less than 5 degrees, so 5 degrees can be used as a reference for the decomposition of the carrier SSB phase noise index. The simulation results have been successfully applied to a satellite inter-satellite link system, which has universal practical application value.
期刊介绍:
Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.