空间特征如何影响城市轨道交通预测精度:基于深度学习的客流预测方法

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2024-11-01 DOI:10.1080/15472450.2023.2279633
Shuang Li , Xiaoxi Liang , Meina Zheng , Junlan Chen , Ting Chen , Xiucheng Guo
{"title":"空间特征如何影响城市轨道交通预测精度:基于深度学习的客流预测方法","authors":"Shuang Li ,&nbsp;Xiaoxi Liang ,&nbsp;Meina Zheng ,&nbsp;Junlan Chen ,&nbsp;Ting Chen ,&nbsp;Xiucheng Guo","doi":"10.1080/15472450.2023.2279633","DOIUrl":null,"url":null,"abstract":"<div><div>Urban rail transit is an integral part of public transit, and has been extensive built in China. Previous studies have proved that the spatial features are closely related to rail transit ridership, considering a fundamental role of short-term passenger flow forecast in the urban rail operation, it is meaningful to explore how these factors affect the prediction accuracy. This study aims to find a way to improve prediction accuracy by considering spatial features of stations based on deep learning. Therefore, a CNN-LSTM model capturing the spatial and temporal features was applied and Suzhou (China) was choosing as a case study to explore the influence of three spatial features, namely relative position, location, and land use, on the prediction accuracy. The predict model used can extract spatiotemporal features and accurately predict the citywide stations, and the results show that, for the relative position, the inbound and outbound flow prediction errors of transfer stations and middle stations are the lowest, respectively. As for locational features, the more distant the station is from the city center, the more accurate the results are. For stations where land use is dominated by work and living services, the predictions are more accurate. The error rate is higher for stations whose services are mainly tourism, transportation, and leisure services. This study’s results can help operators predict the short-term passenger flow of target stations based on different demands and optimize their services on this basis.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 1032-1043"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How spatial features affect urban rail transit prediction accuracy: a deep learning based passenger flow prediction method\",\"authors\":\"Shuang Li ,&nbsp;Xiaoxi Liang ,&nbsp;Meina Zheng ,&nbsp;Junlan Chen ,&nbsp;Ting Chen ,&nbsp;Xiucheng Guo\",\"doi\":\"10.1080/15472450.2023.2279633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban rail transit is an integral part of public transit, and has been extensive built in China. Previous studies have proved that the spatial features are closely related to rail transit ridership, considering a fundamental role of short-term passenger flow forecast in the urban rail operation, it is meaningful to explore how these factors affect the prediction accuracy. This study aims to find a way to improve prediction accuracy by considering spatial features of stations based on deep learning. Therefore, a CNN-LSTM model capturing the spatial and temporal features was applied and Suzhou (China) was choosing as a case study to explore the influence of three spatial features, namely relative position, location, and land use, on the prediction accuracy. The predict model used can extract spatiotemporal features and accurately predict the citywide stations, and the results show that, for the relative position, the inbound and outbound flow prediction errors of transfer stations and middle stations are the lowest, respectively. As for locational features, the more distant the station is from the city center, the more accurate the results are. For stations where land use is dominated by work and living services, the predictions are more accurate. The error rate is higher for stations whose services are mainly tourism, transportation, and leisure services. This study’s results can help operators predict the short-term passenger flow of target stations based on different demands and optimize their services on this basis.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 6\",\"pages\":\"Pages 1032-1043\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023001093\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023001093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

城市轨道交通是公共交通的重要组成部分,在中国得到了广泛的建设。已有研究证明,空间特征与轨道交通客流量密切相关,考虑到短期客流预测在城市轨道交通运营中的基础性作用,探讨这些因素对预测精度的影响具有重要意义。本研究旨在寻找一种基于深度学习的方法,通过考虑台站的空间特征来提高预测精度。因此,采用CNN-LSTM模型捕捉时空特征,并以中国苏州为例,探讨相对位置、地理位置和土地利用三个空间特征对预测精度的影响。所建立的预测模型能够提取时空特征,准确预测全市范围内的站点,结果表明:对于相对位置,中转站的进站流量预测误差最小,中转站的出站流量预测误差最小;在区位特征方面,站点离市中心越远,结果越准确。对于那些土地使用以工作和生活服务为主的车站,预测更为准确。以旅游、交通和休闲服务为主的站点错误率较高。研究结果可以帮助运营商根据不同需求预测目标站点的短期客流,并在此基础上优化服务。关键词:cnn - lstm客流预测精度时空特征城市轨道交通致谢本文作者感谢苏州轨道交通集团有限公司提供的数据集,并感谢朴子源教授的建议。披露声明作者未报告潜在的利益冲突。本研究由江苏省研究生科研与实践创新计划(项目编号:KYCX22_0271)资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How spatial features affect urban rail transit prediction accuracy: a deep learning based passenger flow prediction method
Urban rail transit is an integral part of public transit, and has been extensive built in China. Previous studies have proved that the spatial features are closely related to rail transit ridership, considering a fundamental role of short-term passenger flow forecast in the urban rail operation, it is meaningful to explore how these factors affect the prediction accuracy. This study aims to find a way to improve prediction accuracy by considering spatial features of stations based on deep learning. Therefore, a CNN-LSTM model capturing the spatial and temporal features was applied and Suzhou (China) was choosing as a case study to explore the influence of three spatial features, namely relative position, location, and land use, on the prediction accuracy. The predict model used can extract spatiotemporal features and accurately predict the citywide stations, and the results show that, for the relative position, the inbound and outbound flow prediction errors of transfer stations and middle stations are the lowest, respectively. As for locational features, the more distant the station is from the city center, the more accurate the results are. For stations where land use is dominated by work and living services, the predictions are more accurate. The error rate is higher for stations whose services are mainly tourism, transportation, and leisure services. This study’s results can help operators predict the short-term passenger flow of target stations based on different demands and optimize their services on this basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1