基于手势检测的聋哑人行为分析

Nirmala M.S.
{"title":"基于手势检测的聋哑人行为分析","authors":"Nirmala M.S.","doi":"10.58346/jowua.2023.i3.010","DOIUrl":null,"url":null,"abstract":"Deaf and mute people have unique communication and social challenges that make it hard to express their thoughts, needs, and ideas. Understanding people's behavior is more important to protect them and help them integrate into society. This study discusses the critical need for behavioral analysis on deaf and mute people and introduces the Automatic Behavioral Analysis Employing Gesture Detection Framework (ABA-GDF). Gesture detection technology has gained popularity recently. This emphasis may be due to its ability to overcome communication hurdles and illuminate nonverbal communication. Current methods have various challenges, including limited accuracy and adaptability. The ABA-GDF architecture comprises three phases: dataset collection, modeling, and deployment. The data collection technique includes hand signals used by deaf and quiet people. The material is then processed to partition and normalize the hand area for consistent analysis. During Modelling, feature descriptor attributes are developed to extract relevant motion information. A classifier learns and predicts using the feature vectors, enabling the framework to recognize and interpret motions and actions. Large-scale simulations of ABA-GDF showed promising results. The ABA-GDF framework achieved 92% gesture recognition accuracy on the dataset. The system's robustness is demonstrated by its capacity to understand non-verbal messages. The research showed a 15% reduction in false positives compared to earlier methods, demonstrating its real-world usefulness.","PeriodicalId":38235,"journal":{"name":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavioural Analysis of Deaf and Mute People Using Gesture Detection\",\"authors\":\"Nirmala M.S.\",\"doi\":\"10.58346/jowua.2023.i3.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deaf and mute people have unique communication and social challenges that make it hard to express their thoughts, needs, and ideas. Understanding people's behavior is more important to protect them and help them integrate into society. This study discusses the critical need for behavioral analysis on deaf and mute people and introduces the Automatic Behavioral Analysis Employing Gesture Detection Framework (ABA-GDF). Gesture detection technology has gained popularity recently. This emphasis may be due to its ability to overcome communication hurdles and illuminate nonverbal communication. Current methods have various challenges, including limited accuracy and adaptability. The ABA-GDF architecture comprises three phases: dataset collection, modeling, and deployment. The data collection technique includes hand signals used by deaf and quiet people. The material is then processed to partition and normalize the hand area for consistent analysis. During Modelling, feature descriptor attributes are developed to extract relevant motion information. A classifier learns and predicts using the feature vectors, enabling the framework to recognize and interpret motions and actions. Large-scale simulations of ABA-GDF showed promising results. The ABA-GDF framework achieved 92% gesture recognition accuracy on the dataset. The system's robustness is demonstrated by its capacity to understand non-verbal messages. The research showed a 15% reduction in false positives compared to earlier methods, demonstrating its real-world usefulness.\",\"PeriodicalId\":38235,\"journal\":{\"name\":\"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jowua.2023.i3.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jowua.2023.i3.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

聋哑人有独特的沟通和社交挑战,这使得他们很难表达自己的想法、需求和想法。了解人们的行为对保护他们、帮助他们融入社会更为重要。本研究讨论了聋哑人行为分析的必要性,并介绍了基于手势检测框架的自动行为分析(ABA-GDF)。手势检测技术最近得到了普及。这种强调可能是由于其克服沟通障碍和阐明非语言沟通的能力。目前的方法存在各种挑战,包括准确性和适应性有限。ABA-GDF架构包括三个阶段:数据集收集、建模和部署。数据收集技术包括聋哑人和安静的人使用的手势。然后对材料进行处理,以划分和规范化手部区域,以进行一致的分析。在建模过程中,开发特征描述符属性来提取相关的运动信息。分类器使用特征向量学习和预测,使框架能够识别和解释运动和动作。ABA-GDF的大规模模拟显示了令人满意的结果。ABA-GDF框架在数据集上的手势识别准确率达到92%。该系统的健壮性体现在其理解非语言信息的能力上。研究表明,与早期的方法相比,误报率降低了15%,证明了它在现实世界中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavioural Analysis of Deaf and Mute People Using Gesture Detection
Deaf and mute people have unique communication and social challenges that make it hard to express their thoughts, needs, and ideas. Understanding people's behavior is more important to protect them and help them integrate into society. This study discusses the critical need for behavioral analysis on deaf and mute people and introduces the Automatic Behavioral Analysis Employing Gesture Detection Framework (ABA-GDF). Gesture detection technology has gained popularity recently. This emphasis may be due to its ability to overcome communication hurdles and illuminate nonverbal communication. Current methods have various challenges, including limited accuracy and adaptability. The ABA-GDF architecture comprises three phases: dataset collection, modeling, and deployment. The data collection technique includes hand signals used by deaf and quiet people. The material is then processed to partition and normalize the hand area for consistent analysis. During Modelling, feature descriptor attributes are developed to extract relevant motion information. A classifier learns and predicts using the feature vectors, enabling the framework to recognize and interpret motions and actions. Large-scale simulations of ABA-GDF showed promising results. The ABA-GDF framework achieved 92% gesture recognition accuracy on the dataset. The system's robustness is demonstrated by its capacity to understand non-verbal messages. The research showed a 15% reduction in false positives compared to earlier methods, demonstrating its real-world usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊介绍: JoWUA is an online peer-reviewed journal and aims to provide an international forum for researchers, professionals, and industrial practitioners on all topics related to wireless mobile networks, ubiquitous computing, and their dependable applications. JoWUA consists of high-quality technical manuscripts on advances in the state-of-the-art of wireless mobile networks, ubiquitous computing, and their dependable applications; both theoretical approaches and practical approaches are encouraged to submit. All published articles in JoWUA are freely accessible in this website because it is an open access journal. JoWUA has four issues (March, June, September, December) per year with special issues covering specific research areas by guest editors.
期刊最新文献
Trust based Routing – A Novel Approach for Data Security in WSN based Data Critical Applications Performance Evaluation of Collision Avoidance for Multi-node LoRa Networks based on TDMA and CSMA Algorithm Human-Centric AI : Enhancing User Experience through Natural Language Interfaces A Study on the Implementation of a Network Function for Real-time False Base Station Detection for the Next Generation Mobile Communication Environment Investigating the Secrets, New Challenges, and Best Forensic Methods for Securing Critical Infrastructure Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1