肝脏疾病分类的高效混合CNN方法

Venugopal Reddy Modhugu
{"title":"肝脏疾病分类的高效混合CNN方法","authors":"Venugopal Reddy Modhugu","doi":"10.58346/jowua.2023.i3.004","DOIUrl":null,"url":null,"abstract":"This study focuses on classifying liver diseases using dynamic CT scan images and deep learning techniques. The primary objective is to develop accurate and efficient models for distinguishing between different liver disease categories. Three deep learning models, ResNet50, ResNet18, and AlexNet, are employed for three-class classification, including Hepatitis/cirrhosis, Hepatitis/Fatty liver, and Hepatitis/Wilson's Disease. The dataset comprises dynamic CT scan images of the liver, each manually segmented to identify lesions. To enhance model performance, the data is pre-processed by resizing, normalization, and data augmentation. The dataset is split into training, validation, and test sets for model evaluation. The performance of each model is assessed using confusion matrices, accuracy, sensitivity, and specificity. Results show varying accuracies for different liver disease classes, indicating the strengths and limitations of the models. To overcome the limits of the three-class classifiers, a framework for the Efficient Hybrid CNN method to classify Liver diseases (EHCNNLD) is proposed, combining the predictions from the three models with weighted probabilities. The Proposed EHCNNLD method demonstrates improved accuracy and classification power, enhancing the overall performance for liver disease classification. The study highlights the potential of deep learning techniques in medical image analysis and clinical diagnosis. The findings provide valuable insights into developing robust and accurate models for liver disease classification, paving the way for medical research and patient care advancements.","PeriodicalId":38235,"journal":{"name":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Hybrid CNN Method to Classify the Liver Diseases\",\"authors\":\"Venugopal Reddy Modhugu\",\"doi\":\"10.58346/jowua.2023.i3.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on classifying liver diseases using dynamic CT scan images and deep learning techniques. The primary objective is to develop accurate and efficient models for distinguishing between different liver disease categories. Three deep learning models, ResNet50, ResNet18, and AlexNet, are employed for three-class classification, including Hepatitis/cirrhosis, Hepatitis/Fatty liver, and Hepatitis/Wilson's Disease. The dataset comprises dynamic CT scan images of the liver, each manually segmented to identify lesions. To enhance model performance, the data is pre-processed by resizing, normalization, and data augmentation. The dataset is split into training, validation, and test sets for model evaluation. The performance of each model is assessed using confusion matrices, accuracy, sensitivity, and specificity. Results show varying accuracies for different liver disease classes, indicating the strengths and limitations of the models. To overcome the limits of the three-class classifiers, a framework for the Efficient Hybrid CNN method to classify Liver diseases (EHCNNLD) is proposed, combining the predictions from the three models with weighted probabilities. The Proposed EHCNNLD method demonstrates improved accuracy and classification power, enhancing the overall performance for liver disease classification. The study highlights the potential of deep learning techniques in medical image analysis and clinical diagnosis. The findings provide valuable insights into developing robust and accurate models for liver disease classification, paving the way for medical research and patient care advancements.\",\"PeriodicalId\":38235,\"journal\":{\"name\":\"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jowua.2023.i3.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jowua.2023.i3.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是使用动态CT扫描图像和深度学习技术对肝脏疾病进行分类。主要目标是开发准确和有效的模型来区分不同的肝脏疾病类别。采用ResNet50、ResNet18和AlexNet三个深度学习模型进行三级分类,包括肝炎/肝硬化、肝炎/脂肪肝和肝炎/威尔逊病。该数据集包括肝脏的动态CT扫描图像,每个图像都手工分割以识别病变。为了增强模型性能,通过调整大小、规范化和数据增强对数据进行预处理。数据集分为训练集、验证集和测试集,用于模型评估。每个模型的性能评估使用混淆矩阵,准确性,灵敏度和特异性。结果显示不同肝脏疾病类别的准确性不同,表明模型的优势和局限性。为了克服三类分类器的局限性,提出了一种将三种模型的预测结果与加权概率相结合的高效混合CNN方法(EHCNNLD)框架。提出的EHCNNLD方法提高了准确率和分类能力,提高了肝脏疾病分类的整体性能。该研究强调了深度学习技术在医学图像分析和临床诊断中的潜力。这一发现为开发强大而准确的肝脏疾病分类模型提供了有价值的见解,为医学研究和患者护理的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Hybrid CNN Method to Classify the Liver Diseases
This study focuses on classifying liver diseases using dynamic CT scan images and deep learning techniques. The primary objective is to develop accurate and efficient models for distinguishing between different liver disease categories. Three deep learning models, ResNet50, ResNet18, and AlexNet, are employed for three-class classification, including Hepatitis/cirrhosis, Hepatitis/Fatty liver, and Hepatitis/Wilson's Disease. The dataset comprises dynamic CT scan images of the liver, each manually segmented to identify lesions. To enhance model performance, the data is pre-processed by resizing, normalization, and data augmentation. The dataset is split into training, validation, and test sets for model evaluation. The performance of each model is assessed using confusion matrices, accuracy, sensitivity, and specificity. Results show varying accuracies for different liver disease classes, indicating the strengths and limitations of the models. To overcome the limits of the three-class classifiers, a framework for the Efficient Hybrid CNN method to classify Liver diseases (EHCNNLD) is proposed, combining the predictions from the three models with weighted probabilities. The Proposed EHCNNLD method demonstrates improved accuracy and classification power, enhancing the overall performance for liver disease classification. The study highlights the potential of deep learning techniques in medical image analysis and clinical diagnosis. The findings provide valuable insights into developing robust and accurate models for liver disease classification, paving the way for medical research and patient care advancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊介绍: JoWUA is an online peer-reviewed journal and aims to provide an international forum for researchers, professionals, and industrial practitioners on all topics related to wireless mobile networks, ubiquitous computing, and their dependable applications. JoWUA consists of high-quality technical manuscripts on advances in the state-of-the-art of wireless mobile networks, ubiquitous computing, and their dependable applications; both theoretical approaches and practical approaches are encouraged to submit. All published articles in JoWUA are freely accessible in this website because it is an open access journal. JoWUA has four issues (March, June, September, December) per year with special issues covering specific research areas by guest editors.
期刊最新文献
Trust based Routing – A Novel Approach for Data Security in WSN based Data Critical Applications Performance Evaluation of Collision Avoidance for Multi-node LoRa Networks based on TDMA and CSMA Algorithm Human-Centric AI : Enhancing User Experience through Natural Language Interfaces A Study on the Implementation of a Network Function for Real-time False Base Station Detection for the Next Generation Mobile Communication Environment Investigating the Secrets, New Challenges, and Best Forensic Methods for Securing Critical Infrastructure Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1