{"title":"解决约束优化的固定时间梯度流:统一方法","authors":"Xinli Shi;Xiangping Xu;Guanghui Wen;Jinde Cao","doi":"10.1109/JAS.2023.124089","DOIUrl":null,"url":null,"abstract":"The accelerated method in solving optimization problems has always been an absorbing topic. Based on the fixed-time (FxT) stability of nonlinear dynamical systems, we provide a unified approach for designing FxT gradient flows (FxTGFs). First, a general class of nonlinear functions in designing FxTGFs is provided. A unified method for designing first-order FxTGFs is shown under Polyak-Ljasiewicz inequality assumption, a weaker condition than strong convexity. When there exist both bounded and vanishing disturbances in the gradient flow, a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented. Under the strict convexity assumption, Newton-based FxTGFs is given and further extended to solve time-varying optimization. Besides, the proposed FxTGFs are further used for solving equation-constrained optimization. Moreover, an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization. To show the effectiveness of various FxTGFs, the static regret analyses for several typical FxTGFs are also provided in detail. Finally, the proposed FxTGFs are applied to solve two network problems, i.e., the network consensus problem and solving a system linear equations, respectively, from the perspective of optimization. Particularly, by choosing component-wisely sign-preserving functions, these problems can be solved in a distributed way, which extends the existing results. The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1849-1864"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Time Gradient Flows for Solving Constrained Optimization: A Unified Approach\",\"authors\":\"Xinli Shi;Xiangping Xu;Guanghui Wen;Jinde Cao\",\"doi\":\"10.1109/JAS.2023.124089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accelerated method in solving optimization problems has always been an absorbing topic. Based on the fixed-time (FxT) stability of nonlinear dynamical systems, we provide a unified approach for designing FxT gradient flows (FxTGFs). First, a general class of nonlinear functions in designing FxTGFs is provided. A unified method for designing first-order FxTGFs is shown under Polyak-Ljasiewicz inequality assumption, a weaker condition than strong convexity. When there exist both bounded and vanishing disturbances in the gradient flow, a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented. Under the strict convexity assumption, Newton-based FxTGFs is given and further extended to solve time-varying optimization. Besides, the proposed FxTGFs are further used for solving equation-constrained optimization. Moreover, an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization. To show the effectiveness of various FxTGFs, the static regret analyses for several typical FxTGFs are also provided in detail. Finally, the proposed FxTGFs are applied to solve two network problems, i.e., the network consensus problem and solving a system linear equations, respectively, from the perspective of optimization. Particularly, by choosing component-wisely sign-preserving functions, these problems can be solved in a distributed way, which extends the existing results. The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1849-1864\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605723/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605723/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Fixed-Time Gradient Flows for Solving Constrained Optimization: A Unified Approach
The accelerated method in solving optimization problems has always been an absorbing topic. Based on the fixed-time (FxT) stability of nonlinear dynamical systems, we provide a unified approach for designing FxT gradient flows (FxTGFs). First, a general class of nonlinear functions in designing FxTGFs is provided. A unified method for designing first-order FxTGFs is shown under Polyak-Ljasiewicz inequality assumption, a weaker condition than strong convexity. When there exist both bounded and vanishing disturbances in the gradient flow, a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented. Under the strict convexity assumption, Newton-based FxTGFs is given and further extended to solve time-varying optimization. Besides, the proposed FxTGFs are further used for solving equation-constrained optimization. Moreover, an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization. To show the effectiveness of various FxTGFs, the static regret analyses for several typical FxTGFs are also provided in detail. Finally, the proposed FxTGFs are applied to solve two network problems, i.e., the network consensus problem and solving a system linear equations, respectively, from the perspective of optimization. Particularly, by choosing component-wisely sign-preserving functions, these problems can be solved in a distributed way, which extends the existing results. The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.