东安格利亚大学数字人类参加2023年GENEA挑战

Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor
{"title":"东安格利亚大学数字人类参加2023年GENEA挑战","authors":"Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor","doi":"10.1145/3577190.3616116","DOIUrl":null,"url":null,"abstract":"This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The UEA Digital Humans entry to the GENEA Challenge 2023\",\"authors\":\"Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor\",\"doi\":\"10.1145/3577190.3616116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3616116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3616116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了我们进入GENEA(体现代理的非语言行为的生成和评估)挑战2023。今年的挑战重点是在二元环境中生成手势——从主体和对话者的讲话中预测主体的动作。我们为这个任务调整了一个Transformer-XL架构,添加了一个跨注意力模块,该模块集成了对话者和主代理的演讲。我们的模型以语音音频(使用PASE+编码)、文本(使用FastText编码)和说话者身份标签为条件,并且能够为给定的身份生成流畅且适合语音的手势。我们考虑了GENEA挑战用户研究结果,并讨论了我们的模型优势和可以改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The UEA Digital Humans entry to the GENEA Challenge 2023
This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1