离散放大系统中使用多光相位共轭器的耐PMD传输

Q3 Engineering Journal of Optical Communications Pub Date : 2023-10-09 DOI:10.1515/joc-2023-0250
Xiaogang Tong, Weiwei Cao, Junsheng Zhang, Haijian Liang
{"title":"离散放大系统中使用多光相位共轭器的耐PMD传输","authors":"Xiaogang Tong, Weiwei Cao, Junsheng Zhang, Haijian Liang","doi":"10.1515/joc-2023-0250","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the impact of polarization mode dispersion (PMD) on system performance in coherent optical transmission assisted by optical phase conjugation (OPC) technique is numerically investigated for a 9-channel PM-4QAM system at 128Gbit/s. The OPC-aided transmission, amplified with lumped erbium doped fiber amplifier (EDFA), is a variation of the conventional dispersion-managed link, which is also called dispersion-inverted link. We demonstrate that introducing more OPCs along the link can partly suppress the PMD-induced impairments and thus improve the system performance significantly. Results of 960-km dispersion-managed transmission show that PMD effect will cause a performance penalty of 1.8 dB when using mid-link OPC (i.e., only 1-OPC), while this penalty will decrease to about 0.4 dB when employing 6-OPCs along the link. Comparing with conventional digital back-propagation (DBP) technique, a performance improvement of about 3.1 dB is observed with multi-OPCs when fiber PMD is equal to 0.1ps/ <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msqrt> <m:mrow> <m:mi>k</m:mi> <m:mi>m</m:mi> </m:mrow> </m:msqrt> </m:math> $\\sqrt{km}$ .","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PMD tolerant transmission using multiple optical phase conjugators in the discretely amplified systems\",\"authors\":\"Xiaogang Tong, Weiwei Cao, Junsheng Zhang, Haijian Liang\",\"doi\":\"10.1515/joc-2023-0250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the impact of polarization mode dispersion (PMD) on system performance in coherent optical transmission assisted by optical phase conjugation (OPC) technique is numerically investigated for a 9-channel PM-4QAM system at 128Gbit/s. The OPC-aided transmission, amplified with lumped erbium doped fiber amplifier (EDFA), is a variation of the conventional dispersion-managed link, which is also called dispersion-inverted link. We demonstrate that introducing more OPCs along the link can partly suppress the PMD-induced impairments and thus improve the system performance significantly. Results of 960-km dispersion-managed transmission show that PMD effect will cause a performance penalty of 1.8 dB when using mid-link OPC (i.e., only 1-OPC), while this penalty will decrease to about 0.4 dB when employing 6-OPCs along the link. Comparing with conventional digital back-propagation (DBP) technique, a performance improvement of about 3.1 dB is observed with multi-OPCs when fiber PMD is equal to 0.1ps/ <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msqrt> <m:mrow> <m:mi>k</m:mi> <m:mi>m</m:mi> </m:mrow> </m:msqrt> </m:math> $\\\\sqrt{km}$ .\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文以128Gbit/s速率的9通道PM-4QAM系统为研究对象,研究了偏振模色散(PMD)对光学相位共轭(OPC)技术辅助下相干光传输系统性能的影响。opc辅助传输采用集总掺铒光纤放大器(EDFA)进行放大,是传统色散管理链路的一种变体,也称为色散反向链路。我们证明,在链路上引入更多的opc可以部分抑制pmd引起的损伤,从而显着提高系统性能。960公里色散管理传输的结果表明,当使用中间链路OPC(即仅使用1-OPC)时,PMD效应将导致1.8 dB的性能损失,而当沿链路使用6-OPC时,这种损失将减少到约0.4 dB。与传统的数字反向传播(DBP)技术相比,当光纤PMD = 0.1ps/ km $\sqrt{km}$时,多opcs的性能提高了约3.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PMD tolerant transmission using multiple optical phase conjugators in the discretely amplified systems
Abstract In this paper, the impact of polarization mode dispersion (PMD) on system performance in coherent optical transmission assisted by optical phase conjugation (OPC) technique is numerically investigated for a 9-channel PM-4QAM system at 128Gbit/s. The OPC-aided transmission, amplified with lumped erbium doped fiber amplifier (EDFA), is a variation of the conventional dispersion-managed link, which is also called dispersion-inverted link. We demonstrate that introducing more OPCs along the link can partly suppress the PMD-induced impairments and thus improve the system performance significantly. Results of 960-km dispersion-managed transmission show that PMD effect will cause a performance penalty of 1.8 dB when using mid-link OPC (i.e., only 1-OPC), while this penalty will decrease to about 0.4 dB when employing 6-OPCs along the link. Comparing with conventional digital back-propagation (DBP) technique, a performance improvement of about 3.1 dB is observed with multi-OPCs when fiber PMD is equal to 0.1ps/ k m $\sqrt{km}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optical Communications
Journal of Optical Communications Engineering-Electrical and Electronic Engineering
CiteScore
2.90
自引率
0.00%
发文量
86
期刊介绍: This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications
期刊最新文献
A fiber-wireless integration approach in WDM-PON architecture, boosted with polarization multiplexing and optical frequency comb source Performance study of microwave photonic links by considering the effect of phase shifters and bias conditions on dual-drive dual parallel Mach–Zehnder modulator Hybrid optical-electronic compensation of fiber nonlinearity for long-haul coherent optical transmission Performance parameters estimation of high speed Silicon/Germanium/InGaAsP avalanche photodiodes wide bandwidth capability in ultra high speed optical communication system High thermal stability and high-performance efficiency capability of light sources–based rate equation models in optical fiber transmission systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1