{"title":"多模态偏差:用NLP技术评估计算机视觉模型中的性别偏差","authors":"Abhishek Mandal, Suzanne Little, Susan Leavy","doi":"10.1145/3577190.3614156","DOIUrl":null,"url":null,"abstract":"Large multimodal deep learning models such as Contrastive Language Image Pretraining (CLIP) have become increasingly powerful with applications across several domains in recent years. CLIP works on visual and language modalities and forms a part of several popular models, such as DALL-E and Stable Diffusion. It is trained on a large dataset of millions of image-text pairs crawled from the internet. Such large datasets are often used for training purposes without filtering, leading to models inheriting social biases from internet data. Given that models such as CLIP are being applied in such a wide variety of applications ranging from social media to education, it is vital that harmful biases are detected. However, due to the unbounded nature of the possible inputs and outputs, traditional bias metrics such as accuracy cannot detect the range and complexity of biases present in the model. In this paper, we present an audit of CLIP using an established technique from natural language processing called Word Embeddings Association Test (WEAT) to detect and quantify gender bias in CLIP and demonstrate that it can provide a quantifiable measure of such stereotypical associations. We detected, measured, and visualised various types of stereotypical gender associations with respect to character descriptions and occupations and found that CLIP shows evidence of stereotypical gender bias.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Bias: Assessing Gender Bias in Computer Vision Models with NLP Techniques\",\"authors\":\"Abhishek Mandal, Suzanne Little, Susan Leavy\",\"doi\":\"10.1145/3577190.3614156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large multimodal deep learning models such as Contrastive Language Image Pretraining (CLIP) have become increasingly powerful with applications across several domains in recent years. CLIP works on visual and language modalities and forms a part of several popular models, such as DALL-E and Stable Diffusion. It is trained on a large dataset of millions of image-text pairs crawled from the internet. Such large datasets are often used for training purposes without filtering, leading to models inheriting social biases from internet data. Given that models such as CLIP are being applied in such a wide variety of applications ranging from social media to education, it is vital that harmful biases are detected. However, due to the unbounded nature of the possible inputs and outputs, traditional bias metrics such as accuracy cannot detect the range and complexity of biases present in the model. In this paper, we present an audit of CLIP using an established technique from natural language processing called Word Embeddings Association Test (WEAT) to detect and quantify gender bias in CLIP and demonstrate that it can provide a quantifiable measure of such stereotypical associations. We detected, measured, and visualised various types of stereotypical gender associations with respect to character descriptions and occupations and found that CLIP shows evidence of stereotypical gender bias.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimodal Bias: Assessing Gender Bias in Computer Vision Models with NLP Techniques
Large multimodal deep learning models such as Contrastive Language Image Pretraining (CLIP) have become increasingly powerful with applications across several domains in recent years. CLIP works on visual and language modalities and forms a part of several popular models, such as DALL-E and Stable Diffusion. It is trained on a large dataset of millions of image-text pairs crawled from the internet. Such large datasets are often used for training purposes without filtering, leading to models inheriting social biases from internet data. Given that models such as CLIP are being applied in such a wide variety of applications ranging from social media to education, it is vital that harmful biases are detected. However, due to the unbounded nature of the possible inputs and outputs, traditional bias metrics such as accuracy cannot detect the range and complexity of biases present in the model. In this paper, we present an audit of CLIP using an established technique from natural language processing called Word Embeddings Association Test (WEAT) to detect and quantify gender bias in CLIP and demonstrate that it can provide a quantifiable measure of such stereotypical associations. We detected, measured, and visualised various types of stereotypical gender associations with respect to character descriptions and occupations and found that CLIP shows evidence of stereotypical gender bias.