拥抱接触:检测亲子互动

Metehan Doyran, Ronald Poppe, Albert Ali Salah
{"title":"拥抱接触:检测亲子互动","authors":"Metehan Doyran, Ronald Poppe, Albert Ali Salah","doi":"10.1145/3577190.3614147","DOIUrl":null,"url":null,"abstract":"We focus on a largely overlooked but crucial modality for parent-child interaction analysis: physical contact. In this paper, we provide a feasibility study to automatically detect contact between a parent and child from videos. Our multimodal CNN model uses a combination of 2D pose heatmaps, body part heatmaps, and cropped images. Two datasets (FlickrCI3D and YOUth PCI) are used to explore the generalization capabilities across different contact scenarios. Our experiments demonstrate that using 2D pose heatmaps and body part heatmaps yields the best performance in contact classification when trained from scratch on parent-infant interactions. We further investigate the influence of proximity on our classification performance. Our results indicate that there are unique challenges in parent-infant contact classification. Finally, we show that contact rates from aggregating frame-level predictions provide decent approximations of the true contact rates, suggesting that they can serve as an automated proxy for measuring the quality of parent-child interactions. By releasing the annotations for the YOUth PCI dataset and our code1, we encourage further research to deepen our understanding of parent-infant interactions and their implications for attachment and development.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embracing Contact: Detecting Parent-Infant Interactions\",\"authors\":\"Metehan Doyran, Ronald Poppe, Albert Ali Salah\",\"doi\":\"10.1145/3577190.3614147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on a largely overlooked but crucial modality for parent-child interaction analysis: physical contact. In this paper, we provide a feasibility study to automatically detect contact between a parent and child from videos. Our multimodal CNN model uses a combination of 2D pose heatmaps, body part heatmaps, and cropped images. Two datasets (FlickrCI3D and YOUth PCI) are used to explore the generalization capabilities across different contact scenarios. Our experiments demonstrate that using 2D pose heatmaps and body part heatmaps yields the best performance in contact classification when trained from scratch on parent-infant interactions. We further investigate the influence of proximity on our classification performance. Our results indicate that there are unique challenges in parent-infant contact classification. Finally, we show that contact rates from aggregating frame-level predictions provide decent approximations of the true contact rates, suggesting that they can serve as an automated proxy for measuring the quality of parent-child interactions. By releasing the annotations for the YOUth PCI dataset and our code1, we encourage further research to deepen our understanding of parent-infant interactions and their implications for attachment and development.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的是一种很大程度上被忽视但对亲子互动分析至关重要的方式:身体接触。在本文中,我们提供了一个可行性研究,从视频中自动检测父母和孩子之间的接触。我们的多模态CNN模型使用了2D姿势热图、身体部位热图和裁剪图像的组合。使用两个数据集(FlickrCI3D和YOUth PCI)来探索不同接触场景的泛化能力。我们的实验表明,使用2D姿势热图和身体部位热图在亲子互动的从头开始训练时,在接触分类中产生了最好的性能。我们进一步研究了接近度对分类性能的影响。我们的研究结果表明,在亲子接触分类中存在独特的挑战。最后,我们展示了聚合框架级预测的接触率提供了真实接触率的良好近似值,这表明它们可以作为衡量亲子互动质量的自动代理。通过发布YOUth PCI数据集和我们的code1的注释,我们鼓励进一步的研究,以加深我们对亲子互动及其对依恋和发展的影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embracing Contact: Detecting Parent-Infant Interactions
We focus on a largely overlooked but crucial modality for parent-child interaction analysis: physical contact. In this paper, we provide a feasibility study to automatically detect contact between a parent and child from videos. Our multimodal CNN model uses a combination of 2D pose heatmaps, body part heatmaps, and cropped images. Two datasets (FlickrCI3D and YOUth PCI) are used to explore the generalization capabilities across different contact scenarios. Our experiments demonstrate that using 2D pose heatmaps and body part heatmaps yields the best performance in contact classification when trained from scratch on parent-infant interactions. We further investigate the influence of proximity on our classification performance. Our results indicate that there are unique challenges in parent-infant contact classification. Finally, we show that contact rates from aggregating frame-level predictions provide decent approximations of the true contact rates, suggesting that they can serve as an automated proxy for measuring the quality of parent-child interactions. By releasing the annotations for the YOUth PCI dataset and our code1, we encourage further research to deepen our understanding of parent-infant interactions and their implications for attachment and development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1