第四届社会情感多模态互动促进健康研讨会

Hiroki Tanaka, Satoshi Nakamura, Jean-Claude Martin, Catherine Pelachaud
{"title":"第四届社会情感多模态互动促进健康研讨会","authors":"Hiroki Tanaka, Satoshi Nakamura, Jean-Claude Martin, Catherine Pelachaud","doi":"10.1145/3577190.3616878","DOIUrl":null,"url":null,"abstract":"This workshop discusses how interactive, multimodal technology, such as virtual agents, can measure and train social-affective interactions. Sensing technology now enables analyzing users’ behaviors and physiological signals. Various signal processing and machine learning methods can be used for prediction tasks. Such social signal processing and tools can be applied to measure and reduce social stress in everyday situations, including public speaking at schools and workplaces.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4th Workshop on Social Affective Multimodal Interaction for Health (SAMIH)\",\"authors\":\"Hiroki Tanaka, Satoshi Nakamura, Jean-Claude Martin, Catherine Pelachaud\",\"doi\":\"10.1145/3577190.3616878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This workshop discusses how interactive, multimodal technology, such as virtual agents, can measure and train social-affective interactions. Sensing technology now enables analyzing users’ behaviors and physiological signals. Various signal processing and machine learning methods can be used for prediction tasks. Such social signal processing and tools can be applied to measure and reduce social stress in everyday situations, including public speaking at schools and workplaces.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3616878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3616878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本次研讨会将讨论交互式、多模式技术(如虚拟代理)如何测量和训练社会情感互动。传感技术现在可以分析用户的行为和生理信号。各种信号处理和机器学习方法可用于预测任务。这种社会信号处理和工具可以用于测量和减少日常情况下的社会压力,包括在学校和工作场所的公开演讲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4th Workshop on Social Affective Multimodal Interaction for Health (SAMIH)
This workshop discusses how interactive, multimodal technology, such as virtual agents, can measure and train social-affective interactions. Sensing technology now enables analyzing users’ behaviors and physiological signals. Various signal processing and machine learning methods can be used for prediction tasks. Such social signal processing and tools can be applied to measure and reduce social stress in everyday situations, including public speaking at schools and workplaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1