Joni Mäkinen, Christine F. Dow, Elina Ahokangas, Antti Ojala, Kari Kajuutti, Juulia Kautto, Jukka-Pekka Palmu
{"title":"水疱地貌和冰下排水沉积物:芬兰西南部芬诺斯坎德冰盖床的一个例子","authors":"Joni Mäkinen, Christine F. Dow, Elina Ahokangas, Antti Ojala, Kari Kajuutti, Juulia Kautto, Jukka-Pekka Palmu","doi":"10.1017/jog.2023.37","DOIUrl":null,"url":null,"abstract":"Abstract This study presents the first light detection and ranging (LiDAR)-based morphometric description of a water blister from a past ice-sheet bed caused by rapid supraglacial drainage. The blister formed during the rapid early Holocene deglaciation of the Fennoscandian Ice Sheet (FIS). It is located in southwest Finland within a subglacial meltwater route interpreted to represent the transition from a distributed to a channelized drainage system. A LiDAR digital elevation model was supplemented with sedimentological and ground-penetrating radar data on blister outflow channels and sedimentology of downflow polymorphous mounds and ridges (PMRs). Unlike the water blisters recorded from the rapid drainage of supraglacial lakes on the Greenland Ice Sheet, the smaller blister size here was either due to crevasse or moulin drainage, or was a supraglacial lake drainage that tapped into a pre-existing, relatively efficient drainage system and related semi-sorted sediments, promoting rapid drainage and reworking of PMRs along the meltwater route. The preservation potential or exposure probability of blister marks is presumably low but they can provide important information about evolution of subglacial drainage systems that is of value to modern interpretations of glacial hydrology.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"23 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water blister geomorphology and subglacial drainage sediments: an example from the bed of the Fennoscandian Ice Sheet in SW Finland\",\"authors\":\"Joni Mäkinen, Christine F. Dow, Elina Ahokangas, Antti Ojala, Kari Kajuutti, Juulia Kautto, Jukka-Pekka Palmu\",\"doi\":\"10.1017/jog.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents the first light detection and ranging (LiDAR)-based morphometric description of a water blister from a past ice-sheet bed caused by rapid supraglacial drainage. The blister formed during the rapid early Holocene deglaciation of the Fennoscandian Ice Sheet (FIS). It is located in southwest Finland within a subglacial meltwater route interpreted to represent the transition from a distributed to a channelized drainage system. A LiDAR digital elevation model was supplemented with sedimentological and ground-penetrating radar data on blister outflow channels and sedimentology of downflow polymorphous mounds and ridges (PMRs). Unlike the water blisters recorded from the rapid drainage of supraglacial lakes on the Greenland Ice Sheet, the smaller blister size here was either due to crevasse or moulin drainage, or was a supraglacial lake drainage that tapped into a pre-existing, relatively efficient drainage system and related semi-sorted sediments, promoting rapid drainage and reworking of PMRs along the meltwater route. The preservation potential or exposure probability of blister marks is presumably low but they can provide important information about evolution of subglacial drainage systems that is of value to modern interpretations of glacial hydrology.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.37\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.37","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Water blister geomorphology and subglacial drainage sediments: an example from the bed of the Fennoscandian Ice Sheet in SW Finland
Abstract This study presents the first light detection and ranging (LiDAR)-based morphometric description of a water blister from a past ice-sheet bed caused by rapid supraglacial drainage. The blister formed during the rapid early Holocene deglaciation of the Fennoscandian Ice Sheet (FIS). It is located in southwest Finland within a subglacial meltwater route interpreted to represent the transition from a distributed to a channelized drainage system. A LiDAR digital elevation model was supplemented with sedimentological and ground-penetrating radar data on blister outflow channels and sedimentology of downflow polymorphous mounds and ridges (PMRs). Unlike the water blisters recorded from the rapid drainage of supraglacial lakes on the Greenland Ice Sheet, the smaller blister size here was either due to crevasse or moulin drainage, or was a supraglacial lake drainage that tapped into a pre-existing, relatively efficient drainage system and related semi-sorted sediments, promoting rapid drainage and reworking of PMRs along the meltwater route. The preservation potential or exposure probability of blister marks is presumably low but they can provide important information about evolution of subglacial drainage systems that is of value to modern interpretations of glacial hydrology.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.