{"title":"基于多尺度块正则化增强音频文本情感识别中缺失数据的复原力","authors":"Wei-Cheng Lin, Lucas Goncalves, Carlos Busso","doi":"10.1145/3577190.3614110","DOIUrl":null,"url":null,"abstract":"Most existing audio-text emotion recognition studies have focused on the computational modeling aspects, including strategies for fusing the modalities. An area that has received less attention is understanding the role of proper temporal synchronization between the modalities in the model performance. This study presents a transformer-based model designed with a word-chunk concept, which offers an ideal framework to explore different strategies to align text and speech. The approach creates chunks with alternative alignment strategies with different levels of dependency on the underlying lexical boundaries. A key contribution of this study is the multi-scale chunk alignment strategy, which generates random alignments to create the chunks without considering lexical boundaries. For every epoch, the approach generates a different alignment for each sentence, serving as an effective regularization method for temporal dependency. Our experimental results based on the MSP-Podcast corpus indicate that providing precise temporal alignment information to create the audio-text chunks does not improve the performance of the system. The attention mechanisms in the transformer-based approach are able to compensate for imperfect synchronization between the modalities. However, using exact lexical boundaries makes the system highly vulnerable to missing modalities. In contrast, the model trained with the proposed multi-scale chunk regularization strategy using random alignment can significantly increase its robustness against missing data and remain effective, even under a single audio-only emotion recognition task. The code is available at: https://github.com/winston-lin-wei-cheng/MultiScale-Chunk-Regularization","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Resilience to Missing Data in Audio-Text Emotion Recognition with Multi-Scale Chunk Regularization\",\"authors\":\"Wei-Cheng Lin, Lucas Goncalves, Carlos Busso\",\"doi\":\"10.1145/3577190.3614110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing audio-text emotion recognition studies have focused on the computational modeling aspects, including strategies for fusing the modalities. An area that has received less attention is understanding the role of proper temporal synchronization between the modalities in the model performance. This study presents a transformer-based model designed with a word-chunk concept, which offers an ideal framework to explore different strategies to align text and speech. The approach creates chunks with alternative alignment strategies with different levels of dependency on the underlying lexical boundaries. A key contribution of this study is the multi-scale chunk alignment strategy, which generates random alignments to create the chunks without considering lexical boundaries. For every epoch, the approach generates a different alignment for each sentence, serving as an effective regularization method for temporal dependency. Our experimental results based on the MSP-Podcast corpus indicate that providing precise temporal alignment information to create the audio-text chunks does not improve the performance of the system. The attention mechanisms in the transformer-based approach are able to compensate for imperfect synchronization between the modalities. However, using exact lexical boundaries makes the system highly vulnerable to missing modalities. In contrast, the model trained with the proposed multi-scale chunk regularization strategy using random alignment can significantly increase its robustness against missing data and remain effective, even under a single audio-only emotion recognition task. The code is available at: https://github.com/winston-lin-wei-cheng/MultiScale-Chunk-Regularization\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Resilience to Missing Data in Audio-Text Emotion Recognition with Multi-Scale Chunk Regularization
Most existing audio-text emotion recognition studies have focused on the computational modeling aspects, including strategies for fusing the modalities. An area that has received less attention is understanding the role of proper temporal synchronization between the modalities in the model performance. This study presents a transformer-based model designed with a word-chunk concept, which offers an ideal framework to explore different strategies to align text and speech. The approach creates chunks with alternative alignment strategies with different levels of dependency on the underlying lexical boundaries. A key contribution of this study is the multi-scale chunk alignment strategy, which generates random alignments to create the chunks without considering lexical boundaries. For every epoch, the approach generates a different alignment for each sentence, serving as an effective regularization method for temporal dependency. Our experimental results based on the MSP-Podcast corpus indicate that providing precise temporal alignment information to create the audio-text chunks does not improve the performance of the system. The attention mechanisms in the transformer-based approach are able to compensate for imperfect synchronization between the modalities. However, using exact lexical boundaries makes the system highly vulnerable to missing modalities. In contrast, the model trained with the proposed multi-scale chunk regularization strategy using random alignment can significantly increase its robustness against missing data and remain effective, even under a single audio-only emotion recognition task. The code is available at: https://github.com/winston-lin-wei-cheng/MultiScale-Chunk-Regularization