协同注视:解码同地团队成功合作的非线性注视动力学

G. S. Rajshekar Reddy, Lucca Eloy, Rachel Dickler, Jason G. Reitman, Samuel L. Pugh, Peter W. Foltz, Jamie C. Gorman, Julie L. Harrison, Leanne Hirshfield
{"title":"协同注视:解码同地团队成功合作的非线性注视动力学","authors":"G. S. Rajshekar Reddy, Lucca Eloy, Rachel Dickler, Jason G. Reitman, Samuel L. Pugh, Peter W. Foltz, Jamie C. Gorman, Julie L. Harrison, Leanne Hirshfield","doi":"10.1145/3577190.3614104","DOIUrl":null,"url":null,"abstract":"Joint Visual Attention (JVA) has long been considered a critical component of successful collaborations, enabling coordination and construction of a shared knowledge space. However, recent studies challenge the notion that JVA alone ensures effective collaboration. To gain deeper insights into JVA’s influence, we examine nonlinear gaze coupling and gaze regularity in the collaborators’ visual attention. Specifically, we analyze gaze data from 19 dyadic and triadic teams engaged in a co-located programming task using Recurrence Quantification Analysis (RQA). Our results emphasize the significance of team-level gaze regularity for improving task performance - highlighting the importance of maintaining stable or sustained episodes of joint or individual attention, than disjointed patterns. Additionally, through regression analyses, we examine the predictive capacity of recurrence metrics for subjective traits such as social cohesion and social loafing, revealing unique interpersonal and team dynamics behind productive collaborations. We elaborate on our findings via qualitative anecdotes and discuss their implications in shaping real-time interventions for optimizing collaborative success.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synerg-eye-zing: Decoding Nonlinear Gaze Dynamics Underlying Successful Collaborations in Co-located Teams\",\"authors\":\"G. S. Rajshekar Reddy, Lucca Eloy, Rachel Dickler, Jason G. Reitman, Samuel L. Pugh, Peter W. Foltz, Jamie C. Gorman, Julie L. Harrison, Leanne Hirshfield\",\"doi\":\"10.1145/3577190.3614104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint Visual Attention (JVA) has long been considered a critical component of successful collaborations, enabling coordination and construction of a shared knowledge space. However, recent studies challenge the notion that JVA alone ensures effective collaboration. To gain deeper insights into JVA’s influence, we examine nonlinear gaze coupling and gaze regularity in the collaborators’ visual attention. Specifically, we analyze gaze data from 19 dyadic and triadic teams engaged in a co-located programming task using Recurrence Quantification Analysis (RQA). Our results emphasize the significance of team-level gaze regularity for improving task performance - highlighting the importance of maintaining stable or sustained episodes of joint or individual attention, than disjointed patterns. Additionally, through regression analyses, we examine the predictive capacity of recurrence metrics for subjective traits such as social cohesion and social loafing, revealing unique interpersonal and team dynamics behind productive collaborations. We elaborate on our findings via qualitative anecdotes and discuss their implications in shaping real-time interventions for optimizing collaborative success.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,联合视觉注意(JVA)一直被认为是成功协作的关键组成部分,它使共享知识空间的协调和构建成为可能。然而,最近的研究挑战了JVA单独确保有效协作的概念。为了更深入地了解JVA的影响,我们研究了合作者视觉注意中的非线性凝视耦合和凝视规律。具体来说,我们使用递归量化分析(RQA)分析了19个参与同一地点编程任务的二元和三元团队的凝视数据。我们的研究结果强调了团队层面的凝视规律对提高任务表现的重要性——强调了保持稳定或持续的联合或个人注意力的重要性,而不是不连贯的模式。此外,通过回归分析,我们研究了重现度量对主观特征(如社会凝聚力和社会懒惰)的预测能力,揭示了高效合作背后独特的人际关系和团队动态。我们通过定性轶事详细阐述了我们的发现,并讨论了它们在塑造实时干预措施以优化合作成功方面的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synerg-eye-zing: Decoding Nonlinear Gaze Dynamics Underlying Successful Collaborations in Co-located Teams
Joint Visual Attention (JVA) has long been considered a critical component of successful collaborations, enabling coordination and construction of a shared knowledge space. However, recent studies challenge the notion that JVA alone ensures effective collaboration. To gain deeper insights into JVA’s influence, we examine nonlinear gaze coupling and gaze regularity in the collaborators’ visual attention. Specifically, we analyze gaze data from 19 dyadic and triadic teams engaged in a co-located programming task using Recurrence Quantification Analysis (RQA). Our results emphasize the significance of team-level gaze regularity for improving task performance - highlighting the importance of maintaining stable or sustained episodes of joint or individual attention, than disjointed patterns. Additionally, through regression analyses, we examine the predictive capacity of recurrence metrics for subjective traits such as social cohesion and social loafing, revealing unique interpersonal and team dynamics behind productive collaborations. We elaborate on our findings via qualitative anecdotes and discuss their implications in shaping real-time interventions for optimizing collaborative success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1