澳大利亚陆地碳吸收高分辨率监测中OzFlux涡旋相关方差的经验升级

IF 3.9 2区 地球科学 Q1 ECOLOGY Biogeosciences Pub Date : 2023-10-09 DOI:10.5194/bg-20-4109-2023
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, Albert I. J. M. Van Dijk
{"title":"澳大利亚陆地碳吸收高分辨率监测中OzFlux涡旋相关方差的经验升级","authors":"Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, Albert I. J. M. Van Dijk","doi":"10.5194/bg-20-4109-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We develop high-resolution (1 km) estimates of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) over the Australian continent for the period January 2003 to June 2022 by empirical upscaling of flux tower measurements. We compare our estimates with nine other products that cover the three broad categories that define current methods for estimating the terrestrial carbon cycle and assess if consiliences between datasets can point to the correct dynamics of Australia's carbon cycle. Our results indicate that regional empirical upscaling greatly improves upon the existing global empirical upscaling efforts, outperforms process-based models, and agrees much better with the dynamics of CO2 flux over Australia as estimated by two regional atmospheric inversions. Our nearly 20-year estimates of terrestrial carbon fluxes revealed that Australia is a strong net carbon sink of −0.44 PgC yr−1 (interquartile range, IQR = 0.42 PgC yr−1) on average, with an inter-annual variability of 0.18 PgC yr−1 and an average seasonal amplitude of 0.85 PgC yr−1. Annual mean carbon uptake estimated from other methods ranged considerably, while carbon flux anomalies showed much better agreement between methods. NEE anomalies were predominately driven by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses from GPP than ER. In contrast, we show that the long-term average seasonal cycle is dictated more by the variability in ER than GPP, resulting in peak carbon uptake typically occurring during the cooler, drier austral autumn and winter months. This new estimate of Australia's terrestrial carbon cycle provides a benchmark for assessment against land surface model simulations and a means for monitoring of Australia's terrestrial carbon cycle at an unprecedented high resolution. We call this new estimate of Australia's terrestrial carbon cycle “AusEFlux” (Australian Empirical Fluxes).","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"93 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia\",\"authors\":\"Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, Albert I. J. M. Van Dijk\",\"doi\":\"10.5194/bg-20-4109-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We develop high-resolution (1 km) estimates of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) over the Australian continent for the period January 2003 to June 2022 by empirical upscaling of flux tower measurements. We compare our estimates with nine other products that cover the three broad categories that define current methods for estimating the terrestrial carbon cycle and assess if consiliences between datasets can point to the correct dynamics of Australia's carbon cycle. Our results indicate that regional empirical upscaling greatly improves upon the existing global empirical upscaling efforts, outperforms process-based models, and agrees much better with the dynamics of CO2 flux over Australia as estimated by two regional atmospheric inversions. Our nearly 20-year estimates of terrestrial carbon fluxes revealed that Australia is a strong net carbon sink of −0.44 PgC yr−1 (interquartile range, IQR = 0.42 PgC yr−1) on average, with an inter-annual variability of 0.18 PgC yr−1 and an average seasonal amplitude of 0.85 PgC yr−1. Annual mean carbon uptake estimated from other methods ranged considerably, while carbon flux anomalies showed much better agreement between methods. NEE anomalies were predominately driven by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses from GPP than ER. In contrast, we show that the long-term average seasonal cycle is dictated more by the variability in ER than GPP, resulting in peak carbon uptake typically occurring during the cooler, drier austral autumn and winter months. This new estimate of Australia's terrestrial carbon cycle provides a benchmark for assessment against land surface model simulations and a means for monitoring of Australia's terrestrial carbon cycle at an unprecedented high resolution. We call this new estimate of Australia's terrestrial carbon cycle “AusEFlux” (Australian Empirical Fluxes).\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-20-4109-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-4109-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要通过通量塔测量的经验升级,我们开发了2003年1月至2022年6月期间澳大利亚大陆总初级生产力(GPP)、生态系统呼吸(ER)和净生态系统交换(NEE)的高分辨率(1公里)估计。我们将我们的估算与其他九种产品进行比较,这些产品涵盖了定义当前陆地碳循环估算方法的三大类,并评估数据集之间的一致性是否可以指出澳大利亚碳循环的正确动态。我们的研究结果表明,区域经验升级大大改进了现有的全球经验升级工作,优于基于过程的模式,并且与两次区域大气逆温估计的澳大利亚上空CO2通量动力学更吻合。我们对近20年陆地碳通量的估计表明,澳大利亚是一个强大的净碳汇,平均为- 0.44 PgC年- 1(四分位间距,IQR = 0.42 PgC年- 1),年际变率为0.18 PgC年- 1,平均季节振幅为0.85 PgC年- 1。从其他方法估计的年平均碳吸收量相差很大,而碳通量异常在各种方法之间显示出更好的一致性。东北东电异常主要受累积降水亏缺和盈余驱动,导致GPP的异常响应大于ER。相比之下,我们发现长期平均季节周期更多地取决于ER的变化,而不是GPP,导致碳吸收峰值通常发生在更凉爽、更干燥的南方秋冬月份。这项对澳大利亚陆地碳循环的新估计为陆地表面模型模拟的评估提供了基准,并为以前所未有的高分辨率监测澳大利亚陆地碳循环提供了手段。我们把这个对澳大利亚陆地碳循环的新估计称为“澳大利亚经验通量”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia
Abstract. We develop high-resolution (1 km) estimates of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) over the Australian continent for the period January 2003 to June 2022 by empirical upscaling of flux tower measurements. We compare our estimates with nine other products that cover the three broad categories that define current methods for estimating the terrestrial carbon cycle and assess if consiliences between datasets can point to the correct dynamics of Australia's carbon cycle. Our results indicate that regional empirical upscaling greatly improves upon the existing global empirical upscaling efforts, outperforms process-based models, and agrees much better with the dynamics of CO2 flux over Australia as estimated by two regional atmospheric inversions. Our nearly 20-year estimates of terrestrial carbon fluxes revealed that Australia is a strong net carbon sink of −0.44 PgC yr−1 (interquartile range, IQR = 0.42 PgC yr−1) on average, with an inter-annual variability of 0.18 PgC yr−1 and an average seasonal amplitude of 0.85 PgC yr−1. Annual mean carbon uptake estimated from other methods ranged considerably, while carbon flux anomalies showed much better agreement between methods. NEE anomalies were predominately driven by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses from GPP than ER. In contrast, we show that the long-term average seasonal cycle is dictated more by the variability in ER than GPP, resulting in peak carbon uptake typically occurring during the cooler, drier austral autumn and winter months. This new estimate of Australia's terrestrial carbon cycle provides a benchmark for assessment against land surface model simulations and a means for monitoring of Australia's terrestrial carbon cycle at an unprecedented high resolution. We call this new estimate of Australia's terrestrial carbon cycle “AusEFlux” (Australian Empirical Fluxes).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeosciences
Biogeosciences 环境科学-地球科学综合
CiteScore
8.60
自引率
8.20%
发文量
258
审稿时长
4.2 months
期刊介绍: Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.
期刊最新文献
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas Root distributions predict shrub–steppe responses to precipitation intensity Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1