激光熔覆制备铁基合金涂层的组织与力学性能

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science-medziagotyra Pub Date : 2023-09-01 DOI:10.5755/j02.ms.33919
Lu XIE, Yueming WANG
{"title":"激光熔覆制备铁基合金涂层的组织与力学性能","authors":"Lu XIE, Yueming WANG","doi":"10.5755/j02.ms.33919","DOIUrl":null,"url":null,"abstract":"The Fe-based alloy coating was prepared on the surface of 25Cr2Ni4MoV steel substrate by laser cladding. The microstructure, microhardness, shear strength, friction and wear properties of the laser cladding coating were systematically studied. The results show that a good metallurgical bond has been formed between Fe-based alloy coating and substrate. The laser cladding layer is a typical dendritic crystal, which is composed of light gray and dark gray phases. The shear strength displacement curve shows the typical characteristics of brittle fracture, with an average shear strength of 280.83 MPa. The average dry friction coefficient, wear track depth and average wear volume of laser cladding Fe-based alloy coatings are (0.45 ± 0.01), (26 ± 3) μm and 0.066615 m3, respectively. The average dry friction coefficient, wear track depth and average wear volume of 25Cr2Ni4MoV substrate are (0.60 ± 0.01), (39 ± 3) μm and 0.13085 m3, respectively. The laser cladded Fe-based alloy coating exhibits much better wear resistance than the steel substrate, and the shear strength of the coating displays its potential for the application in the service environment of shear stress.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Mechanical Properties of Fe-Based Alloy Coatings Fabricated by Laser Cladding\",\"authors\":\"Lu XIE, Yueming WANG\",\"doi\":\"10.5755/j02.ms.33919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fe-based alloy coating was prepared on the surface of 25Cr2Ni4MoV steel substrate by laser cladding. The microstructure, microhardness, shear strength, friction and wear properties of the laser cladding coating were systematically studied. The results show that a good metallurgical bond has been formed between Fe-based alloy coating and substrate. The laser cladding layer is a typical dendritic crystal, which is composed of light gray and dark gray phases. The shear strength displacement curve shows the typical characteristics of brittle fracture, with an average shear strength of 280.83 MPa. The average dry friction coefficient, wear track depth and average wear volume of laser cladding Fe-based alloy coatings are (0.45 ± 0.01), (26 ± 3) μm and 0.066615 m3, respectively. The average dry friction coefficient, wear track depth and average wear volume of 25Cr2Ni4MoV substrate are (0.60 ± 0.01), (39 ± 3) μm and 0.13085 m3, respectively. The laser cladded Fe-based alloy coating exhibits much better wear resistance than the steel substrate, and the shear strength of the coating displays its potential for the application in the service environment of shear stress.\",\"PeriodicalId\":18298,\"journal\":{\"name\":\"Materials Science-medziagotyra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-medziagotyra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.ms.33919\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.ms.33919","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用激光熔覆的方法在25Cr2Ni4MoV钢基体表面制备了铁基合金涂层。系统地研究了激光熔覆层的显微组织、显微硬度、抗剪强度、摩擦磨损性能。结果表明,铁基合金涂层与基体之间形成了良好的冶金结合。激光熔覆层为典型的枝晶,由浅灰色相和深灰色相组成。抗剪强度位移曲线表现为典型的脆性断裂特征,平均抗剪强度为280.83 MPa。激光熔覆铁基合金涂层的平均干摩擦系数为(0.45±0.01)μm,平均磨损轨迹深度为(26±3)μm,平均磨损体积为0.066615 m3。25Cr2Ni4MoV基板的平均干摩擦系数为(0.60±0.01)μm,磨损轨迹深度为(39±3)μm,平均磨损体积为0.13085 m3。激光熔覆铁基合金涂层的耐磨性明显优于钢基体,涂层的抗剪强度显示出其在剪切应力工况下的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and Mechanical Properties of Fe-Based Alloy Coatings Fabricated by Laser Cladding
The Fe-based alloy coating was prepared on the surface of 25Cr2Ni4MoV steel substrate by laser cladding. The microstructure, microhardness, shear strength, friction and wear properties of the laser cladding coating were systematically studied. The results show that a good metallurgical bond has been formed between Fe-based alloy coating and substrate. The laser cladding layer is a typical dendritic crystal, which is composed of light gray and dark gray phases. The shear strength displacement curve shows the typical characteristics of brittle fracture, with an average shear strength of 280.83 MPa. The average dry friction coefficient, wear track depth and average wear volume of laser cladding Fe-based alloy coatings are (0.45 ± 0.01), (26 ± 3) μm and 0.066615 m3, respectively. The average dry friction coefficient, wear track depth and average wear volume of 25Cr2Ni4MoV substrate are (0.60 ± 0.01), (39 ± 3) μm and 0.13085 m3, respectively. The laser cladded Fe-based alloy coating exhibits much better wear resistance than the steel substrate, and the shear strength of the coating displays its potential for the application in the service environment of shear stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science-medziagotyra
Materials Science-medziagotyra 工程技术-材料科学:综合
CiteScore
1.70
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.
期刊最新文献
The Effect of Self-Healing Microorganism-Encapsulating Concrete on Enhancing Concrete Compressive Strength Fabrication of Functional Coating Layer for Emerging Transparent Electrodes using Antimony Tin Oxide Nano-colloid Fabrication of High-Performance Insulated Metal Substrates Employing h-BN Mixture/Epoxy Composite Coated on Roughened Copper Plate Performance and Phase Change Kinetic Investigations on Capric-Myristic Acid Eutectic Mixtures for Energy-Saving Construction The Photocatalytic Activity of the Bi2O3-B2O3-ZnO-TiO2 Glass Coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1