PLA打印CT试样断裂与光栅宽度函数关系的实验研究

O. Aourik, M. Othmani, A. Chouaf
{"title":"PLA打印CT试样断裂与光栅宽度函数关系的实验研究","authors":"O. Aourik, M. Othmani, A. Chouaf","doi":"10.5604/01.3001.0053.9595","DOIUrl":null,"url":null,"abstract":"The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the fracture of CT specimens printed in PLA as a function of the raster width\",\"authors\":\"O. Aourik, M. Othmani, A. Chouaf\",\"doi\":\"10.5604/01.3001.0053.9595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.9595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.9595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

FDM(熔融沉积建模)增材制造工艺的特点是大量的工艺变量,这些变量决定了制造零件的机械性能和质量。当逐层打印时,构成层的细丝一方面在同一层中的细丝之间焊接,另一方面在重叠层之间焊接,这种焊接沿着沉积细丝的接触面(光栅宽度)进行。这种焊接的质量决定了丝与丝之间和层与层之间抗裂纹扩展的能力。本文旨在研究光栅宽度对FDM结构抗裂纹扩展性能的影响。我们已经开发了一种实验方法,从CT样品来确定聚乳酸(PLA)聚合物的抗拉强度,考虑到j积分法。考虑到问题的复杂性,我们对栅格宽度(l=0.42 mm, l=0.56 mm和l=0.68 mm)的三种情况进行了处理。由所得结果(J,∆a)可知,当线材宽度较小时,FDM打印的零件抗裂纹扩展能力较好。实际上,打破试样所需的能量相对于更大宽度的情况更大。这一发现证实了比较值的J为一个给定的裂纹的进展为研究的三个情况。为了进行详尽的研究,我们重点研究了光栅宽度(包括0.42 mm, 0.56 mm至0.68 mm)对印刷PLA裂纹扩展的影响。其他打印参数的研究正在进行中。为了突出开裂机制,将在扫描电镜上进行更深入的微观观察。本文的分析可为FDM零件的设计提供决策支持。实际上,我们可以选择栅格宽度,以提供对功能部件所需的裂纹扩展的阻力。本文对FDM打印CT试件的损伤机理进行了分析。这个课题代表了许多研究方向的新方向。在我们的研究中,我们使用J积分理论方法通过确定阻力曲线(J-∆a)来研究这些部件的断裂行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study of the fracture of CT specimens printed in PLA as a function of the raster width
The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of materials science and engineering
Archives of materials science and engineering Materials Science-Materials Science (all)
CiteScore
2.90
自引率
0.00%
发文量
15
期刊最新文献
Heat transfer improvement using additive manufacturing technologies: a review Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass Details Matter in Structure-based Drug Design. Investigation of the effect of polymer concentration in fracturing fluid on crack size and permeability during hydraulic fracturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1