Max Bartunik;Janina Teller;Georg Fischer;Jens Kirchner
{"title":"使用生物兼容信息载体的分子通信试验台的信道参数研究:方法与数据","authors":"Max Bartunik;Janina Teller;Georg Fischer;Jens Kirchner","doi":"10.1109/TMBMC.2023.3325405","DOIUrl":null,"url":null,"abstract":"Testbeds play an essential role in the development of real-life molecular communication applications and experimental validation of communication channel models. Although some testbed concepts have been published in recent years, very few setups are inherently suitable for biomedical applications. Furthermore, systematic experimental data of a wide parameter field for molecular communication is scarce and often difficult to generate. In this work, a biocompatible testbed for molecular communication with magnetic nanoparticles is used to investigate a series of transmission channel parameters. The observed results are discussed in the context of a laminar flow channel. All experimental data regarding the parameter studies as well as an additional data set for a large binary transmission sequence is provided as a supplement to this publication. The data is available on a public server to allow for further use by other researchers.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"489-498"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Parameter Studies of a Molecular Communication Testbed With Biocompatible Information Carriers: Methods and Data\",\"authors\":\"Max Bartunik;Janina Teller;Georg Fischer;Jens Kirchner\",\"doi\":\"10.1109/TMBMC.2023.3325405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testbeds play an essential role in the development of real-life molecular communication applications and experimental validation of communication channel models. Although some testbed concepts have been published in recent years, very few setups are inherently suitable for biomedical applications. Furthermore, systematic experimental data of a wide parameter field for molecular communication is scarce and often difficult to generate. In this work, a biocompatible testbed for molecular communication with magnetic nanoparticles is used to investigate a series of transmission channel parameters. The observed results are discussed in the context of a laminar flow channel. All experimental data regarding the parameter studies as well as an additional data set for a large binary transmission sequence is provided as a supplement to this publication. The data is available on a public server to allow for further use by other researchers.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"9 4\",\"pages\":\"489-498\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10288221/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10288221/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Channel Parameter Studies of a Molecular Communication Testbed With Biocompatible Information Carriers: Methods and Data
Testbeds play an essential role in the development of real-life molecular communication applications and experimental validation of communication channel models. Although some testbed concepts have been published in recent years, very few setups are inherently suitable for biomedical applications. Furthermore, systematic experimental data of a wide parameter field for molecular communication is scarce and often difficult to generate. In this work, a biocompatible testbed for molecular communication with magnetic nanoparticles is used to investigate a series of transmission channel parameters. The observed results are discussed in the context of a laminar flow channel. All experimental data regarding the parameter studies as well as an additional data set for a large binary transmission sequence is provided as a supplement to this publication. The data is available on a public server to allow for further use by other researchers.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.