基于多层社会工程框架的网络钓鱼检测

Q3 Computer Science Journal of Cyber Security and Mobility Pub Date : 2023-01-01 DOI:10.32604/jcs.2023.043359
Kofi Sarpong Adu-Manu, Richard Kwasi Ahiable
{"title":"基于多层社会工程框架的网络钓鱼检测","authors":"Kofi Sarpong Adu-Manu, Richard Kwasi Ahiable","doi":"10.32604/jcs.2023.043359","DOIUrl":null,"url":null,"abstract":"As businesses develop and expand with a significant volume of data, data protection and privacy become increasingly important. Research has shown a tremendous increase in phishing activities during and after COVID-19. This research aimed to improve the existing approaches to detecting phishing activities on the internet. We designed a multi-layered phish detection algorithm to detect and prevent phishing applications on the internet using URLs. In the algorithm, we considered technical dimensions of phishing attack prevention and mitigation on the internet. In our approach, we merge, Phishtank, Blacklist, Blocklist, and Whitelist to form our framework. A web application system and browser extension were developed to implement the algorithm. The multi-layer phish detector evaluated ten thousand URLs gathered randomly from the internet (five thousand phishing and five thousand legitimate URLs). The system was estimated to detect levels of accuracy, true-positive and false-positive values. The system level accuracy was recorded to be 98.16%. Approximately 49.6% of the websites were detected as illegitimate, whilst 49.8% were seen as legitimate.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Phishing Using a Multi-Layered Social Engineering Framework\",\"authors\":\"Kofi Sarpong Adu-Manu, Richard Kwasi Ahiable\",\"doi\":\"10.32604/jcs.2023.043359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As businesses develop and expand with a significant volume of data, data protection and privacy become increasingly important. Research has shown a tremendous increase in phishing activities during and after COVID-19. This research aimed to improve the existing approaches to detecting phishing activities on the internet. We designed a multi-layered phish detection algorithm to detect and prevent phishing applications on the internet using URLs. In the algorithm, we considered technical dimensions of phishing attack prevention and mitigation on the internet. In our approach, we merge, Phishtank, Blacklist, Blocklist, and Whitelist to form our framework. A web application system and browser extension were developed to implement the algorithm. The multi-layer phish detector evaluated ten thousand URLs gathered randomly from the internet (five thousand phishing and five thousand legitimate URLs). The system was estimated to detect levels of accuracy, true-positive and false-positive values. The system level accuracy was recorded to be 98.16%. Approximately 49.6% of the websites were detected as illegitimate, whilst 49.8% were seen as legitimate.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/jcs.2023.043359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/jcs.2023.043359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

随着业务的发展和扩展,数据量越来越大,数据保护和隐私变得越来越重要。研究表明,在COVID-19期间和之后,网络钓鱼活动急剧增加。本研究旨在改进现有的检测网络钓鱼活动的方法。我们设计了一种多层网络钓鱼检测算法,用于检测和防止网络上使用url的网络钓鱼应用程序。在算法中,我们考虑了网络钓鱼攻击预防和缓解的技术维度。在我们的方法中,我们合并,钓鱼坦克,黑名单,黑名单和白名单,以形成我们的框架。开发了一个web应用系统和浏览器扩展来实现该算法。多层网络钓鱼探测器评估了从互联网上随机收集的1万个网址(5000个钓鱼网址和5000个合法网址)。据估计,该系统可以检测准确率、真阳性和假阳性值。系统级准确度为98.16%。大约49.6%的网站被检测为非法网站,而49.8%被视为合法网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Phishing Using a Multi-Layered Social Engineering Framework
As businesses develop and expand with a significant volume of data, data protection and privacy become increasingly important. Research has shown a tremendous increase in phishing activities during and after COVID-19. This research aimed to improve the existing approaches to detecting phishing activities on the internet. We designed a multi-layered phish detection algorithm to detect and prevent phishing applications on the internet using URLs. In the algorithm, we considered technical dimensions of phishing attack prevention and mitigation on the internet. In our approach, we merge, Phishtank, Blacklist, Blocklist, and Whitelist to form our framework. A web application system and browser extension were developed to implement the algorithm. The multi-layer phish detector evaluated ten thousand URLs gathered randomly from the internet (five thousand phishing and five thousand legitimate URLs). The system was estimated to detect levels of accuracy, true-positive and false-positive values. The system level accuracy was recorded to be 98.16%. Approximately 49.6% of the websites were detected as illegitimate, whilst 49.8% were seen as legitimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1