Dong Qin, Juan Guo, Ming Liang, Ling Chen, Weimin He
{"title":"准分子激光加工PMMA的表面表征及摩擦学行为","authors":"Dong Qin, Juan Guo, Ming Liang, Ling Chen, Weimin He","doi":"10.1186/s10033-023-00938-x","DOIUrl":null,"url":null,"abstract":"Abstract Polyoxymethylene methacrylate (PMMA) is widely used in ophthalmic biomaterials. Misuse of PMMA in extreme environments is likely to damage the ocular surface and intraocular structures. The surface characterization and tribological behavior of PMMA processed using an excimer laser were investigated in this study by contrasting different lubrication conditions and friction cycles. The results show that the roughness of the material surface increases with laser processing, which changes its physical structure. Under lubrication, the laser-treated PMMA exhibits better hydrophilicity, especially during the use of eye drops. No obvious relationship exists between the laser-processing time and friction behavior. However, the laser treatment may contribute to the formation of friction and wear mechanisms of PMMA materials. Laser-treated PMMA in saline solution exhibits better abrasive resistance by showing a lower wear rate than that in eye drops, although it has a higher friction coefficient. In this study, the different friction stages in laser-treated PMMA were clarified under two lubrication conditions. The wear rates of the laser-treated PMMA were found to decrease with the number of cycles, and the friction coefficient has a similar variation tendency. The wear behavior of the laser-treated PMMA is dominated by the main abrasive wear and secondary transferred film formation. This study provides a theoretical basis for the development and application of ophthalmic biomaterials in complex environments by examining the material surface interface behavior and wear mechanism after laser processing using PMMA as the research matrix.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Characterization and Tribology Behavior of PMMA Processed by Excimer Laser\",\"authors\":\"Dong Qin, Juan Guo, Ming Liang, Ling Chen, Weimin He\",\"doi\":\"10.1186/s10033-023-00938-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polyoxymethylene methacrylate (PMMA) is widely used in ophthalmic biomaterials. Misuse of PMMA in extreme environments is likely to damage the ocular surface and intraocular structures. The surface characterization and tribological behavior of PMMA processed using an excimer laser were investigated in this study by contrasting different lubrication conditions and friction cycles. The results show that the roughness of the material surface increases with laser processing, which changes its physical structure. Under lubrication, the laser-treated PMMA exhibits better hydrophilicity, especially during the use of eye drops. No obvious relationship exists between the laser-processing time and friction behavior. However, the laser treatment may contribute to the formation of friction and wear mechanisms of PMMA materials. Laser-treated PMMA in saline solution exhibits better abrasive resistance by showing a lower wear rate than that in eye drops, although it has a higher friction coefficient. In this study, the different friction stages in laser-treated PMMA were clarified under two lubrication conditions. The wear rates of the laser-treated PMMA were found to decrease with the number of cycles, and the friction coefficient has a similar variation tendency. The wear behavior of the laser-treated PMMA is dominated by the main abrasive wear and secondary transferred film formation. This study provides a theoretical basis for the development and application of ophthalmic biomaterials in complex environments by examining the material surface interface behavior and wear mechanism after laser processing using PMMA as the research matrix.\",\"PeriodicalId\":10115,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10033-023-00938-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00938-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Surface Characterization and Tribology Behavior of PMMA Processed by Excimer Laser
Abstract Polyoxymethylene methacrylate (PMMA) is widely used in ophthalmic biomaterials. Misuse of PMMA in extreme environments is likely to damage the ocular surface and intraocular structures. The surface characterization and tribological behavior of PMMA processed using an excimer laser were investigated in this study by contrasting different lubrication conditions and friction cycles. The results show that the roughness of the material surface increases with laser processing, which changes its physical structure. Under lubrication, the laser-treated PMMA exhibits better hydrophilicity, especially during the use of eye drops. No obvious relationship exists between the laser-processing time and friction behavior. However, the laser treatment may contribute to the formation of friction and wear mechanisms of PMMA materials. Laser-treated PMMA in saline solution exhibits better abrasive resistance by showing a lower wear rate than that in eye drops, although it has a higher friction coefficient. In this study, the different friction stages in laser-treated PMMA were clarified under two lubrication conditions. The wear rates of the laser-treated PMMA were found to decrease with the number of cycles, and the friction coefficient has a similar variation tendency. The wear behavior of the laser-treated PMMA is dominated by the main abrasive wear and secondary transferred film formation. This study provides a theoretical basis for the development and application of ophthalmic biomaterials in complex environments by examining the material surface interface behavior and wear mechanism after laser processing using PMMA as the research matrix.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.