{"title":"众包系统中的公平分配","authors":"Mishal Assif, William Kennedy, Iraj Saniee","doi":"10.3390/g14040057","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. We use the framework of a Shapley allocation which is regarded as a fundamental method of computing the fair share of all participants in a cooperative game when the values of all possible coalitions could be quantified. To quantify the value of all coalitions, we define a class of value functions for crowd-sourced systems which capture the contributions of the founders and the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These value functions are defined for different scenarios, such as the presence of oligopolies or geographic spread of the crowd, taking network effects, including Metcalfe’s law, into account. A key result we obtain is that under quite general conditions, the crowd participants are collectively owed a share between 12 and 23 of the total value of the crowd-sourced system. We close with an empirical analysis demonstrating the consistency of our results with the compensation offered to the crowd participants in some public internet content sharing companies.","PeriodicalId":35065,"journal":{"name":"Games","volume":"21 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair Allocation in Crowd-Sourced Systems\",\"authors\":\"Mishal Assif, William Kennedy, Iraj Saniee\",\"doi\":\"10.3390/g14040057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. We use the framework of a Shapley allocation which is regarded as a fundamental method of computing the fair share of all participants in a cooperative game when the values of all possible coalitions could be quantified. To quantify the value of all coalitions, we define a class of value functions for crowd-sourced systems which capture the contributions of the founders and the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These value functions are defined for different scenarios, such as the presence of oligopolies or geographic spread of the crowd, taking network effects, including Metcalfe’s law, into account. A key result we obtain is that under quite general conditions, the crowd participants are collectively owed a share between 12 and 23 of the total value of the crowd-sourced system. We close with an empirical analysis demonstrating the consistency of our results with the compensation offered to the crowd participants in some public internet content sharing companies.\",\"PeriodicalId\":35065,\"journal\":{\"name\":\"Games\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/g14040057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14040057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. We use the framework of a Shapley allocation which is regarded as a fundamental method of computing the fair share of all participants in a cooperative game when the values of all possible coalitions could be quantified. To quantify the value of all coalitions, we define a class of value functions for crowd-sourced systems which capture the contributions of the founders and the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These value functions are defined for different scenarios, such as the presence of oligopolies or geographic spread of the crowd, taking network effects, including Metcalfe’s law, into account. A key result we obtain is that under quite general conditions, the crowd participants are collectively owed a share between 12 and 23 of the total value of the crowd-sourced system. We close with an empirical analysis demonstrating the consistency of our results with the compensation offered to the crowd participants in some public internet content sharing companies.
GamesDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍:
Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.