Thomas Michely, Jason Bergelt, Affan Safeer, Alexander Bäder, Tobias Hartl, Jeison Fischer
{"title":"排列和扭曲六方氮化硼在Ir(110)上的生长","authors":"Thomas Michely, Jason Bergelt, Affan Safeer, Alexander Bäder, Tobias Hartl, Jeison Fischer","doi":"10.1088/2053-1583/ad064a","DOIUrl":null,"url":null,"abstract":"Abstract The growth of monolayer hexagonal boron nitride (h-BN) on Ir(110) through low-pressure chemical vapor deposition is investigated using low energy electron diffraction and scanning tunneling microscopy. We find that the growth of aligned h-BN on Ir(110) requires a growth temperature of 1500 K, whereas lower growth temperatures result in coexistence of aligned h-BN with twisted h-BN. The presence of the h-BN overlayer suppresses the formation of the nano-faceted ridge pattern known from clean Ir(110). Instead, we observe the formation of a <?CDATA $(1 \\times n)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>×</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> reconstruction, with n such that the missing rows are in registry with the h-BN/Ir(110) moiré pattern. Our moiré analysis showcases a precise methodology for determining both the moiré periodicity and the h-BN lattice parameter on an fcc(110) surface. Aligned h-BN on Ir(110) is found to be slightly compressed compared to bulk h-BN, with a monolayer lattice parameter of <?CDATA $a_{\\mathrm{h-BN}} = (0.2489 \\pm 0.0006)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">h</mml:mi> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">B</mml:mi> <mml:mi mathvariant=\"normal\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0.2489</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.0006</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> nm. The lattice mismatch with the substrate along <?CDATA $\\left[ 1 \\bar{1} 0 \\right]$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mfenced close=\"]\" open=\"[\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mover> <mml:mn>1</mml:mn> <mml:mo>ˉ</mml:mo> </mml:mover> <mml:mn>0</mml:mn> </mml:mrow> </mml:mfenced> </mml:math> gives rise to a moiré periodicity of <?CDATA $a_{\\mathrm{m}} = 2.99 \\pm 0.08$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">m</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2.99</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> </mml:math> nm.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"71 24","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of aligned and twisted hexagonal boron nitride on Ir(110)\",\"authors\":\"Thomas Michely, Jason Bergelt, Affan Safeer, Alexander Bäder, Tobias Hartl, Jeison Fischer\",\"doi\":\"10.1088/2053-1583/ad064a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The growth of monolayer hexagonal boron nitride (h-BN) on Ir(110) through low-pressure chemical vapor deposition is investigated using low energy electron diffraction and scanning tunneling microscopy. We find that the growth of aligned h-BN on Ir(110) requires a growth temperature of 1500 K, whereas lower growth temperatures result in coexistence of aligned h-BN with twisted h-BN. The presence of the h-BN overlayer suppresses the formation of the nano-faceted ridge pattern known from clean Ir(110). Instead, we observe the formation of a <?CDATA $(1 \\\\times n)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>×</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> reconstruction, with n such that the missing rows are in registry with the h-BN/Ir(110) moiré pattern. Our moiré analysis showcases a precise methodology for determining both the moiré periodicity and the h-BN lattice parameter on an fcc(110) surface. Aligned h-BN on Ir(110) is found to be slightly compressed compared to bulk h-BN, with a monolayer lattice parameter of <?CDATA $a_{\\\\mathrm{h-BN}} = (0.2489 \\\\pm 0.0006)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">h</mml:mi> <mml:mo>−</mml:mo> <mml:mi mathvariant=\\\"normal\\\">B</mml:mi> <mml:mi mathvariant=\\\"normal\\\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0.2489</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.0006</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> nm. The lattice mismatch with the substrate along <?CDATA $\\\\left[ 1 \\\\bar{1} 0 \\\\right]$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mfenced close=\\\"]\\\" open=\\\"[\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mover> <mml:mn>1</mml:mn> <mml:mo>ˉ</mml:mo> </mml:mover> <mml:mn>0</mml:mn> </mml:mrow> </mml:mfenced> </mml:math> gives rise to a moiré periodicity of <?CDATA $a_{\\\\mathrm{m}} = 2.99 \\\\pm 0.08$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">m</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2.99</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> </mml:math> nm.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"71 24\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad064a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad064a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth of aligned and twisted hexagonal boron nitride on Ir(110)
Abstract The growth of monolayer hexagonal boron nitride (h-BN) on Ir(110) through low-pressure chemical vapor deposition is investigated using low energy electron diffraction and scanning tunneling microscopy. We find that the growth of aligned h-BN on Ir(110) requires a growth temperature of 1500 K, whereas lower growth temperatures result in coexistence of aligned h-BN with twisted h-BN. The presence of the h-BN overlayer suppresses the formation of the nano-faceted ridge pattern known from clean Ir(110). Instead, we observe the formation of a (1×n) reconstruction, with n such that the missing rows are in registry with the h-BN/Ir(110) moiré pattern. Our moiré analysis showcases a precise methodology for determining both the moiré periodicity and the h-BN lattice parameter on an fcc(110) surface. Aligned h-BN on Ir(110) is found to be slightly compressed compared to bulk h-BN, with a monolayer lattice parameter of ah−BN=(0.2489±0.0006) nm. The lattice mismatch with the substrate along 11ˉ0 gives rise to a moiré periodicity of am=2.99±0.08 nm.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.