基于鲸鱼优化算法的河流洪水调度分布式Muskingum模型

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-10-09 DOI:10.2166/hydro.2023.029
Vida Atashi, Reza Barati, Yeo Howe Lim
{"title":"基于鲸鱼优化算法的河流洪水调度分布式Muskingum模型","authors":"Vida Atashi, Reza Barati, Yeo Howe Lim","doi":"10.2166/hydro.2023.029","DOIUrl":null,"url":null,"abstract":"Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Muskingum model with a Whale Optimization Algorithm for river flood routing\",\"authors\":\"Vida Atashi, Reza Barati, Yeo Howe Lim\",\"doi\":\"10.2166/hydro.2023.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

摘要为了提高模型的准确性,提出了一种新的非线性河流洪水路径模型。它使用鲸鱼优化算法(WOA)集成横向流入,并采用分布式Muskingum模型,将河流划分为更小的间隔以进行精确计算。主要目标是最小化观测到的和模拟流出之间的平方和误差(SSE)。我们的方法应用于六个不同的洪水水文,揭示了它的多功能性和有效性。对于Lawler和Dinavar的洪水数据,单河段Muskingum模型优于多河段模型,证明了其在处理横向流入方面的有效性。对于Lawler的数据,单步模型(NR = 1)的最优参数为K = 0.392, x = 0.027, m = 1.511, β = 0.010,具有较好的效果。相反,当拟合Wilson、Wye、Linsley、Viessman和Lewis的洪水数据时,多河段Muskingum模型表现出更好的整体性能。值得注意的是,该模型在Viessman和Lewis洪水数据上表现出色,特别是在两条河段(NR = 2)时,在使用相同参数集的情况下,SSE提高了21.6%。这项研究代表了洪水建模的重大进步,提高了河流洪水路径的准确性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Muskingum model with a Whale Optimization Algorithm for river flood routing
Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1