用变分自编码器表示耦合器曲线的不变形式:在四杆机构轨迹综合中的应用

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-10-09 DOI:10.1115/1.4063726
Anar Nurizada, Anurag Purwar
{"title":"用变分自编码器表示耦合器曲线的不变形式:在四杆机构轨迹综合中的应用","authors":"Anar Nurizada, Anurag Purwar","doi":"10.1115/1.4063726","DOIUrl":null,"url":null,"abstract":"Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called Variational Autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for automated conceptual design of mechanisms for robots and machines.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Invariant Representation of Coupler Curves using a Variational AutoEncoder: Application to Path Synthesis of Four-Bar Mechanisms\",\"authors\":\"Anar Nurizada, Anurag Purwar\",\"doi\":\"10.1115/1.4063726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called Variational Autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for automated conceptual design of mechanisms for robots and machines.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063726\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了基于深度神经网络的平面机构耦合器曲线的表示与综合。虽然平面机构的路径综合并不是一个新问题,但在神经网络环境下耦合器曲线的有效表示尚未得到充分的探索。本研究比较了四小节耦合器曲线的四种常用特征或表示:傅立叶描述子、小波、点坐标和图像。结果表明,这些不同的表示可以使用一种称为变分自编码器(VAE)的生成式人工智能框架进行统一。该研究表明,无论输入表示如何,VAE都可以提供耦合器曲线的独立表示,并且VAE的紧凑潜在维数可用于描述四杆机构的耦合器曲线。此外,提出了一种利用VAE结合全连接神经网络生成四杆机构尺寸参数的新方法。本研究为机器人和机器机构的自动化概念设计提供了一个新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Invariant Representation of Coupler Curves using a Variational AutoEncoder: Application to Path Synthesis of Four-Bar Mechanisms
Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called Variational Autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for automated conceptual design of mechanisms for robots and machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation A Novel Approach to Line Clipping Against a Rectangular Window Layered Security Guidance for Data Asset Management in Additive Manufacturing. Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1