根据开尔文定律(恒电流)和波印廷矢量,一个无处不在的、隐藏在第四维空间中的电磁能量库

IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Physics Essays Pub Date : 2023-09-07 DOI:10.4006/0836-1398-36.3.287
Andreas Trupp
{"title":"根据开尔文定律(恒电流)和波印廷矢量,一个无处不在的、隐藏在第四维空间中的电磁能量库","authors":"Andreas Trupp","doi":"10.4006/0836-1398-36.3.287","DOIUrl":null,"url":null,"abstract":"When applying what is called Kelvin’s principle to the elementary currents of two permanent magnets that attract each other, an apparent energy paradox appears. For Kelvin’s principle says that when constant electric currents are displaced with respect to one another, the mechanical work yielded as a result of the action of magnetic forces is equal in amount to the increase (not decrease) in the energy of the total magnetic field. The energy provided by the power supply in order to keep the currents constant is thus twice as large as the mechanical work yielded during the displacement of the current-carrying wires. But when dealing with permanent magnets and their polarization currents, there is still the yield of mechanical work and also the increase in energy of the total magnetic field, but no such thing as a visible power supply. In this article, things are analyzed by using the Poynting vector as an instrument. As a result, the topological assumption of a hidden reservoir of energy sitting in the direction of a fourth spatial dimension turns out to be indispensable in order to save the principle of local conservation of energy and of action by contact. A recognition of this kind was foreshadowed by Mie 100 years ago, who postulated that, in certain, but nevertheless common situations, energy flowed into ambient space out of the particles themselves both in the gravitational and the electromagnetic case.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":"2017 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ubiquitous, nearby reservoir of electromagnetic energy hidden in the fourth spatial dimension as a consequence of Kelvin’s rule (for constant electric currents) and of the Poynting vector\",\"authors\":\"Andreas Trupp\",\"doi\":\"10.4006/0836-1398-36.3.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When applying what is called Kelvin’s principle to the elementary currents of two permanent magnets that attract each other, an apparent energy paradox appears. For Kelvin’s principle says that when constant electric currents are displaced with respect to one another, the mechanical work yielded as a result of the action of magnetic forces is equal in amount to the increase (not decrease) in the energy of the total magnetic field. The energy provided by the power supply in order to keep the currents constant is thus twice as large as the mechanical work yielded during the displacement of the current-carrying wires. But when dealing with permanent magnets and their polarization currents, there is still the yield of mechanical work and also the increase in energy of the total magnetic field, but no such thing as a visible power supply. In this article, things are analyzed by using the Poynting vector as an instrument. As a result, the topological assumption of a hidden reservoir of energy sitting in the direction of a fourth spatial dimension turns out to be indispensable in order to save the principle of local conservation of energy and of action by contact. A recognition of this kind was foreshadowed by Mie 100 years ago, who postulated that, in certain, but nevertheless common situations, energy flowed into ambient space out of the particles themselves both in the gravitational and the electromagnetic case.\",\"PeriodicalId\":51274,\"journal\":{\"name\":\"Physics Essays\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Essays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4006/0836-1398-36.3.287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4006/0836-1398-36.3.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当将所谓的开尔文原理应用于两个相互吸引的永磁体的基本电流时,一个明显的能量悖论出现了。因为开尔文原理说,当恒定的电流相互位移时,由于磁力作用而产生的机械功等于总磁场能量的增加(而不是减少)。因此,电源为保持电流恒定而提供的能量是载流导线位移过程中产生的机械功的两倍。但是当处理永磁体和它们的极化电流时,仍然有机械功的产出,也有总磁场能量的增加,但是没有可见的电源。在本文中,使用Poynting向量作为工具来分析事物。因此,为了保存局部能量守恒和接触作用的原理,在第四个空间维度方向上存在一个隐藏的能量库的拓扑假设是必不可少的。早在100年前,Mie就预示了这种认识,他假设,在某些情况下,无论是在引力情况下还是在电磁情况下,能量都会从粒子本身流入周围空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A ubiquitous, nearby reservoir of electromagnetic energy hidden in the fourth spatial dimension as a consequence of Kelvin’s rule (for constant electric currents) and of the Poynting vector
When applying what is called Kelvin’s principle to the elementary currents of two permanent magnets that attract each other, an apparent energy paradox appears. For Kelvin’s principle says that when constant electric currents are displaced with respect to one another, the mechanical work yielded as a result of the action of magnetic forces is equal in amount to the increase (not decrease) in the energy of the total magnetic field. The energy provided by the power supply in order to keep the currents constant is thus twice as large as the mechanical work yielded during the displacement of the current-carrying wires. But when dealing with permanent magnets and their polarization currents, there is still the yield of mechanical work and also the increase in energy of the total magnetic field, but no such thing as a visible power supply. In this article, things are analyzed by using the Poynting vector as an instrument. As a result, the topological assumption of a hidden reservoir of energy sitting in the direction of a fourth spatial dimension turns out to be indispensable in order to save the principle of local conservation of energy and of action by contact. A recognition of this kind was foreshadowed by Mie 100 years ago, who postulated that, in certain, but nevertheless common situations, energy flowed into ambient space out of the particles themselves both in the gravitational and the electromagnetic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Essays
Physics Essays PHYSICS, MULTIDISCIPLINARY-
自引率
83.30%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Physics Essays has been established as an international journal dedicated to theoretical and experimental aspects of fundamental problems in Physics and, generally, to the advancement of basic knowledge of Physics. The Journal’s mandate is to publish rigorous and methodological examinations of past, current, and advanced concepts, methods and results in physics research. Physics Essays dedicates itself to the publication of stimulating exploratory, and original papers in a variety of physics disciplines, such as spectroscopy, quantum mechanics, particle physics, electromagnetic theory, astrophysics, space physics, mathematical methods in physics, plasma physics, philosophical aspects of physics, chemical physics, and relativity.
期刊最新文献
A Novel Approach for Mucosal and Bulbar Olfactory Ensheathing Cells Isolation Based on the Non-adherent Subculture Technique. Bohr’s atomic model and the probabilistic reality Completing Dirac’s work. The Dirac electron is a 2D hologram The case against gravity A note on anisotropic quantum gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1