细胞载蛋白水凝胶的生物打印:从软骨到骨组织工程

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-09-07 DOI:10.36922/ijb.1089
Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani
{"title":"细胞载蛋白水凝胶的生物打印:从软骨到骨组织工程","authors":"Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani","doi":"10.36922/ijb.1089","DOIUrl":null,"url":null,"abstract":"The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"26 1","pages":"0"},"PeriodicalIF":6.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprinting of cell-laden protein-based hydrogels: From cartilage to bone tissue engineering\",\"authors\":\"Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani\",\"doi\":\"10.36922/ijb.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1089\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/ijb.1089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于生物打印的细胞负载蛋白基水凝胶(PBHs)的制造需要仔细考虑许多因素,以确保最佳的结构和功能。生物打印技术,如单细胞、多细胞和细胞聚合生物打印,被用于将细胞包裹在PBHs生物链接中,从而能够创建软骨和骨再生的支架。在制造过程中,必须考虑影响pbh内细胞行为和蛋白质结构的生物物理和生化因素。精确控制交联方法、水凝胶流变特性和打印参数对于在不影响细胞活力和蛋白质完整性的情况下实现所需的支架特性也至关重要。本文主要综述了生物物理因素(包括组成、微观结构、生物降解和交联)和生化因素(包括化学结构、生长因子和信号分子)对蛋白质结构和细胞行为的影响。此外,还讨论了生物打印pbh的关键考虑因素及其对组织成功再生的影响。此外,本文还重点介绍了负载细胞pbh在生物打印和骨软骨再生方面的发展现状、存在的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioprinting of cell-laden protein-based hydrogels: From cartilage to bone tissue engineering
The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants Designing a 3D-printed medical implant with mechanically macrostructural topology and microbionic lattices: A novel wedge-shaped spacer for high tibial osteotomy and biomechanical study PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells Building a degradable scaffold with 3D printing using Masquelet technique to promote osteoblast differentiation and angiogenesis in chronic tibial osteomyelitis with bone defects Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1