纳米陶瓷基热障涂层的实验与数值分析:减少城市热岛的潜在解决方案?

Bruno Malet-Damour, Dimitri Bigot, Garry Rivière
{"title":"纳米陶瓷基热障涂层的实验与数值分析:减少城市热岛的潜在解决方案?","authors":"Bruno Malet-Damour, Dimitri Bigot, Garry Rivière","doi":"10.3390/eng4030138","DOIUrl":null,"url":null,"abstract":"Adopting a multiscale approach is crucial for optimizing urban and building performance, prompting inquiries about the link between a technology’s local efficiency (building scale) and its broader impact (city-wide). To investigate this correlation and devise effective strategies for enhancing building and city energy performance, we experimentally examined a commercial nano-ceramic Thermal Barrier Coating (TBC) on a small-scale building and assessed numerically its influence on mitigating Urban Heat Islands (UHIs) at a city scale, translated in our case by the use of the thermal comfort index: the Universal Thermal Climate Index (UTCI). Our results reveal that the coating significantly curbs heat transfer locally, reducing surface temperatures by over 50 ∘C compared to traditional roofs and attenuating more than 70% of heat flux, potentially alleviating air conditioning demands and associated urban heat effects. However, implementing such coatings across a city does not notably advance overall efficiency and might trigger minor overheating on thermal perception. Hence, while nano-ceramic coatings indirectly aid UHI mitigation, they are not a standalone fix; instead, an integrated strategy involving efficient coatings, sustainable urban planning, and increased vegetation emerges as the optimal path toward creating enduringly sustainable, pleasant, and efficient urban environments to counter urban heat challenges effectively.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Analysis on a Thermal Barrier Coating with Nano-Ceramic Base: A Potential Solution to Reduce Urban Heat Islands?\",\"authors\":\"Bruno Malet-Damour, Dimitri Bigot, Garry Rivière\",\"doi\":\"10.3390/eng4030138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adopting a multiscale approach is crucial for optimizing urban and building performance, prompting inquiries about the link between a technology’s local efficiency (building scale) and its broader impact (city-wide). To investigate this correlation and devise effective strategies for enhancing building and city energy performance, we experimentally examined a commercial nano-ceramic Thermal Barrier Coating (TBC) on a small-scale building and assessed numerically its influence on mitigating Urban Heat Islands (UHIs) at a city scale, translated in our case by the use of the thermal comfort index: the Universal Thermal Climate Index (UTCI). Our results reveal that the coating significantly curbs heat transfer locally, reducing surface temperatures by over 50 ∘C compared to traditional roofs and attenuating more than 70% of heat flux, potentially alleviating air conditioning demands and associated urban heat effects. However, implementing such coatings across a city does not notably advance overall efficiency and might trigger minor overheating on thermal perception. Hence, while nano-ceramic coatings indirectly aid UHI mitigation, they are not a standalone fix; instead, an integrated strategy involving efficient coatings, sustainable urban planning, and increased vegetation emerges as the optimal path toward creating enduringly sustainable, pleasant, and efficient urban environments to counter urban heat challenges effectively.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4030138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用多尺度方法对于优化城市和建筑性能至关重要,这促使人们对一项技术的局部效率(建筑规模)与其更广泛的影响(城市范围)之间的联系提出了疑问。为了研究这种相关性,并制定有效的策略来提高建筑和城市的能源性能,我们在一个小型建筑上实验研究了一种商业纳米陶瓷热障涂层(TBC),并在城市尺度上评估了其对缓解城市热岛(UHIs)的影响,在我们的案例中,使用热舒适指数:通用热气候指数(UTCI)进行了数值评估。我们的研究结果显示,这种涂层显著地抑制了局部的热传递,与传统屋顶相比,表面温度降低了50°C以上,并减少了70%以上的热流,潜在地减轻了空调需求和相关的城市热效应。然而,在整个城市实施这种涂料并不能显著提高整体效率,而且可能会在热感知上引发轻微过热。因此,虽然纳米陶瓷涂层间接有助于缓解UHI,但它们并不是一个独立的解决方案;相反,一个包括高效涂料、可持续城市规划和增加植被的综合战略成为创造持久可持续、宜人和高效的城市环境的最佳途径,以有效应对城市热挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Numerical Analysis on a Thermal Barrier Coating with Nano-Ceramic Base: A Potential Solution to Reduce Urban Heat Islands?
Adopting a multiscale approach is crucial for optimizing urban and building performance, prompting inquiries about the link between a technology’s local efficiency (building scale) and its broader impact (city-wide). To investigate this correlation and devise effective strategies for enhancing building and city energy performance, we experimentally examined a commercial nano-ceramic Thermal Barrier Coating (TBC) on a small-scale building and assessed numerically its influence on mitigating Urban Heat Islands (UHIs) at a city scale, translated in our case by the use of the thermal comfort index: the Universal Thermal Climate Index (UTCI). Our results reveal that the coating significantly curbs heat transfer locally, reducing surface temperatures by over 50 ∘C compared to traditional roofs and attenuating more than 70% of heat flux, potentially alleviating air conditioning demands and associated urban heat effects. However, implementing such coatings across a city does not notably advance overall efficiency and might trigger minor overheating on thermal perception. Hence, while nano-ceramic coatings indirectly aid UHI mitigation, they are not a standalone fix; instead, an integrated strategy involving efficient coatings, sustainable urban planning, and increased vegetation emerges as the optimal path toward creating enduringly sustainable, pleasant, and efficient urban environments to counter urban heat challenges effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of the Synthesis Variables in the Preparation of CoAl2O4 Pigment Using Microwaves to Reduce Energetic Consumption Remarks on Constitutive Modeling of Granular Materials Analysis and Design Methodology of Radial Flux Surface-Mounted Permanent Magnet Synchronous Motors The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution Review of Graphene-Based Materials for Tribological Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1