遗传性视网膜疾病的基因治疗:利用基因组编辑和纳米技术的新工具

Cláudia Carvalho, Luísa Lemos, Pedro Antas, Miguel C. Seabra
{"title":"遗传性视网膜疾病的基因治疗:利用基因组编辑和纳米技术的新工具","authors":"Cláudia Carvalho, Luísa Lemos, Pedro Antas, Miguel C. Seabra","doi":"10.3389/fopht.2023.1270561","DOIUrl":null,"url":null,"abstract":"Inherited retinal diseases (IRDs) encompass a diverse group of genetic disorders that lead to progressive visual impairment and blindness. Over the years, considerable strides have been made in understanding the underlying molecular mechanisms of IRDs, laying the foundation for novel therapeutic interventions. Gene therapy has emerged as a compelling approach for treating IRDs, with notable advancements achieved through targeted gene augmentation. However, several setbacks and limitations persist, hindering the widespread clinical success of gene therapy for IRDs. One promising avenue of research is the development of new genome editing tools. Cutting-edge technologies such as CRISPR-Cas9 nucleases, base editing and prime editing provide unprecedented precision and efficiency in targeted gene manipulation, offering the potential to overcome existing challenges in gene therapy for IRDs. Furthermore, traditional gene therapy encounters a significant challenge due to immune responses to viral vectors, which remain crucial obstacles in achieving long-lasting therapeutic effects. Nanotechnology has emerged as a valuable ally in the quest to optimize gene therapy outcomes for ocular diseases. Nanoparticles engineered with nanoscale precision offer improved gene delivery to specific retinal cells, allowing for enhanced targeting and reduced immunogenicity. In this review, we discuss recent advancements in gene therapy for IRDs and explore the setbacks that have been encountered in clinical trials. We highlight the technological advances in genome editing for the treatment of IRDs and how integrating nanotechnology into gene delivery strategies could enhance the safety and efficacy of gene therapy, ultimately offering hope for patients with IRDs and potentially paving the way for similar advancements in other ocular disorders.","PeriodicalId":73096,"journal":{"name":"Frontiers in ophthalmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene therapy for inherited retinal diseases: exploiting new tools in genome editing and nanotechnology\",\"authors\":\"Cláudia Carvalho, Luísa Lemos, Pedro Antas, Miguel C. Seabra\",\"doi\":\"10.3389/fopht.2023.1270561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inherited retinal diseases (IRDs) encompass a diverse group of genetic disorders that lead to progressive visual impairment and blindness. Over the years, considerable strides have been made in understanding the underlying molecular mechanisms of IRDs, laying the foundation for novel therapeutic interventions. Gene therapy has emerged as a compelling approach for treating IRDs, with notable advancements achieved through targeted gene augmentation. However, several setbacks and limitations persist, hindering the widespread clinical success of gene therapy for IRDs. One promising avenue of research is the development of new genome editing tools. Cutting-edge technologies such as CRISPR-Cas9 nucleases, base editing and prime editing provide unprecedented precision and efficiency in targeted gene manipulation, offering the potential to overcome existing challenges in gene therapy for IRDs. Furthermore, traditional gene therapy encounters a significant challenge due to immune responses to viral vectors, which remain crucial obstacles in achieving long-lasting therapeutic effects. Nanotechnology has emerged as a valuable ally in the quest to optimize gene therapy outcomes for ocular diseases. Nanoparticles engineered with nanoscale precision offer improved gene delivery to specific retinal cells, allowing for enhanced targeting and reduced immunogenicity. In this review, we discuss recent advancements in gene therapy for IRDs and explore the setbacks that have been encountered in clinical trials. We highlight the technological advances in genome editing for the treatment of IRDs and how integrating nanotechnology into gene delivery strategies could enhance the safety and efficacy of gene therapy, ultimately offering hope for patients with IRDs and potentially paving the way for similar advancements in other ocular disorders.\",\"PeriodicalId\":73096,\"journal\":{\"name\":\"Frontiers in ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fopht.2023.1270561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fopht.2023.1270561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传性视网膜疾病(IRDs)包括导致进行性视力损害和失明的多种遗传性疾病。多年来,在了解IRDs的潜在分子机制方面取得了长足的进步,为新的治疗干预奠定了基础。基因治疗已成为治疗ird的一种引人注目的方法,通过靶向基因增强取得了显着进展。然而,一些挫折和限制仍然存在,阻碍了基因治疗ird的广泛临床成功。一个有前途的研究途径是开发新的基因组编辑工具。CRISPR-Cas9核酸酶、碱基编辑和引物编辑等尖端技术为靶向基因操作提供了前所未有的精度和效率,为克服ird基因治疗中的现有挑战提供了潜力。此外,由于对病毒载体的免疫反应,传统的基因治疗遇到了重大挑战,这仍然是实现持久治疗效果的关键障碍。纳米技术已经成为寻求优化眼部疾病基因治疗结果的宝贵盟友。纳米级精密工程纳米颗粒提供了改善的基因传递到特定的视网膜细胞,允许增强靶向性和降低免疫原性。在这篇综述中,我们讨论了ird基因治疗的最新进展,并探讨了在临床试验中遇到的挫折。我们强调了用于治疗ird的基因组编辑技术的进步,以及如何将纳米技术整合到基因传递策略中可以提高基因治疗的安全性和有效性,最终为ird患者带来希望,并可能为其他眼部疾病的类似进展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene therapy for inherited retinal diseases: exploiting new tools in genome editing and nanotechnology
Inherited retinal diseases (IRDs) encompass a diverse group of genetic disorders that lead to progressive visual impairment and blindness. Over the years, considerable strides have been made in understanding the underlying molecular mechanisms of IRDs, laying the foundation for novel therapeutic interventions. Gene therapy has emerged as a compelling approach for treating IRDs, with notable advancements achieved through targeted gene augmentation. However, several setbacks and limitations persist, hindering the widespread clinical success of gene therapy for IRDs. One promising avenue of research is the development of new genome editing tools. Cutting-edge technologies such as CRISPR-Cas9 nucleases, base editing and prime editing provide unprecedented precision and efficiency in targeted gene manipulation, offering the potential to overcome existing challenges in gene therapy for IRDs. Furthermore, traditional gene therapy encounters a significant challenge due to immune responses to viral vectors, which remain crucial obstacles in achieving long-lasting therapeutic effects. Nanotechnology has emerged as a valuable ally in the quest to optimize gene therapy outcomes for ocular diseases. Nanoparticles engineered with nanoscale precision offer improved gene delivery to specific retinal cells, allowing for enhanced targeting and reduced immunogenicity. In this review, we discuss recent advancements in gene therapy for IRDs and explore the setbacks that have been encountered in clinical trials. We highlight the technological advances in genome editing for the treatment of IRDs and how integrating nanotechnology into gene delivery strategies could enhance the safety and efficacy of gene therapy, ultimately offering hope for patients with IRDs and potentially paving the way for similar advancements in other ocular disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Comparison of the PlusoptiX A16 and vision screener V100. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. Diagnostic accuracy of a modularized, virtual-reality-based automated pupillometer for detection of relative afferent pupillary defect in unilateral optic neuropathies. Advances in the management of intraocular foreign bodies. Large animal model species in pluripotent stem cell therapy research and development for retinal diseases: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1