无线通信系统CNN模型的调制分类分析

K Tamizhelakkiya, Sabitha Gauni, Prabhu Chandhar
{"title":"无线通信系统CNN模型的调制分类分析","authors":"K Tamizhelakkiya, Sabitha Gauni, Prabhu Chandhar","doi":"10.3934/electreng.2023018","DOIUrl":null,"url":null,"abstract":"<abstract><p>Modulation classification (MC) is a critical task in wireless communication systems, enabling the identification of the modulation class in the received signals. In this paper, we analyzed a novel multi-layer convolutional neural network (CNN) to extract hierarchical features directly from the raw baseband samples. Moreover, we compared the training and testing accuracy of the CNN model for various decimation rates, input sample size and the number of convolutional layers. The results showed that the three-layer CNN model provided better classification accuracy with less computation cost. Furthermore, we observed that the MC performance of the proposed CNN model was better than the other deep learning (DL) and cumulant-based models.</p></abstract>","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation classification analysis of CNN model for wireless communication systems\",\"authors\":\"K Tamizhelakkiya, Sabitha Gauni, Prabhu Chandhar\",\"doi\":\"10.3934/electreng.2023018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Modulation classification (MC) is a critical task in wireless communication systems, enabling the identification of the modulation class in the received signals. In this paper, we analyzed a novel multi-layer convolutional neural network (CNN) to extract hierarchical features directly from the raw baseband samples. Moreover, we compared the training and testing accuracy of the CNN model for various decimation rates, input sample size and the number of convolutional layers. The results showed that the three-layer CNN model provided better classification accuracy with less computation cost. Furthermore, we observed that the MC performance of the proposed CNN model was better than the other deep learning (DL) and cumulant-based models.</p></abstract>\",\"PeriodicalId\":36329,\"journal\":{\"name\":\"AIMS Electronics and Electrical Engineering\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/electreng.2023018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2023018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

调制分类(MC)是无线通信系统中的一项关键任务,它能够识别接收信号中的调制类别。在本文中,我们分析了一种新的多层卷积神经网络(CNN),直接从原始基带样本中提取层次特征。此外,我们比较了CNN模型在不同抽取率、输入样本量和卷积层数下的训练和测试精度。结果表明,三层CNN模型具有较好的分类精度和较低的计算成本。此外,我们观察到所提出的CNN模型的MC性能优于其他深度学习(DL)和基于累积量的模型。</p></abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation classification analysis of CNN model for wireless communication systems

Modulation classification (MC) is a critical task in wireless communication systems, enabling the identification of the modulation class in the received signals. In this paper, we analyzed a novel multi-layer convolutional neural network (CNN) to extract hierarchical features directly from the raw baseband samples. Moreover, we compared the training and testing accuracy of the CNN model for various decimation rates, input sample size and the number of convolutional layers. The results showed that the three-layer CNN model provided better classification accuracy with less computation cost. Furthermore, we observed that the MC performance of the proposed CNN model was better than the other deep learning (DL) and cumulant-based models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊最新文献
Miniature glass-metal coaxial waveguide reactors for microwave-assisted liquid heating Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems Adaptive online auto-tuning using particle swarm optimized PI controller with time-variant approach for high accuracy and speed in dual active bridge converter Analysis of a low-profile, dual band patch antenna for wireless applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1