稻壳灰衍生二氧化硅纳米颗粒对甜玉米种子萌发的影响

Q4 Immunology and Microbiology Journal of Applied and Natural Science Pub Date : 2023-09-19 DOI:10.31018/jans.v15i3.4893
S. Pradeep Kumar, M. Mohamed Yassin, S. Marimuthu, M.K. Kalarani, S. Thiyageshwari, Guru Meenakshi
{"title":"稻壳灰衍生二氧化硅纳米颗粒对甜玉米种子萌发的影响","authors":"S. Pradeep Kumar, M. Mohamed Yassin, S. Marimuthu, M.K. Kalarani, S. Thiyageshwari, Guru Meenakshi","doi":"10.31018/jans.v15i3.4893","DOIUrl":null,"url":null,"abstract":"In agriculture, the utilization of nanomaterials has garnered significant global attention. This research adopts a pioneering approach to investigate the influence of nanosilica on the germination dynamics of sweetcorn seeds. The present study aimed to synthesize and analyze an amorphous nano-silica material using rice husk ash (RHA) and its impact on the germination of sweetcorn seeds (Zea mays L. sachharata). The extracted nano-silica particles dispersed into six rates of suspensions (0, 100, 200, 300, 400 and 500 ppm) were used to study their effects on seed germination. The synthesized amorphous nano-silica was determined for size, shape, and elemental content. The amorphous nature of the silica sample was confirmed by transmission electron microscopy-selected area electron diffraction (ED) patterns and X-ray diffraction (XRD), whereas siloxane and silanol groups were mainly detected by Fourier-transform infrared (FT-IR) spectroscopy. Image obtained using scanning electron microscopy (SEM) revealed the presence of original nanoparticles alongside secondary microparticles, probably due to agglomeration. Particles in the extracted amorphous silica had an average diameter of 35 nm. Nano-silica powder was amorphous, according to XRD. As per the EDS analysis, the extracted silica sample is 96.87 % pure. The amorphous nano-silica significantly boosted germination metrics such as germination percentage, germination index, vigour index, and mean germination time of sweetcorn. With the addition of 300 ppm nano-silica, the germination percentage increased by 40.1%, the germination index by 96%, and the vigor index by 120% over control seeds. The improvement of seed germination by amorphous nano-silica in sweetcorn implies a potential application of nano-silica in seed germination.","PeriodicalId":14996,"journal":{"name":"Journal of Applied and Natural Science","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of rice husk ash-derived silica nanoparticles on sweetcorn (Zea mays L. sachharata) seed germination\",\"authors\":\"S. Pradeep Kumar, M. Mohamed Yassin, S. Marimuthu, M.K. Kalarani, S. Thiyageshwari, Guru Meenakshi\",\"doi\":\"10.31018/jans.v15i3.4893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In agriculture, the utilization of nanomaterials has garnered significant global attention. This research adopts a pioneering approach to investigate the influence of nanosilica on the germination dynamics of sweetcorn seeds. The present study aimed to synthesize and analyze an amorphous nano-silica material using rice husk ash (RHA) and its impact on the germination of sweetcorn seeds (Zea mays L. sachharata). The extracted nano-silica particles dispersed into six rates of suspensions (0, 100, 200, 300, 400 and 500 ppm) were used to study their effects on seed germination. The synthesized amorphous nano-silica was determined for size, shape, and elemental content. The amorphous nature of the silica sample was confirmed by transmission electron microscopy-selected area electron diffraction (ED) patterns and X-ray diffraction (XRD), whereas siloxane and silanol groups were mainly detected by Fourier-transform infrared (FT-IR) spectroscopy. Image obtained using scanning electron microscopy (SEM) revealed the presence of original nanoparticles alongside secondary microparticles, probably due to agglomeration. Particles in the extracted amorphous silica had an average diameter of 35 nm. Nano-silica powder was amorphous, according to XRD. As per the EDS analysis, the extracted silica sample is 96.87 % pure. The amorphous nano-silica significantly boosted germination metrics such as germination percentage, germination index, vigour index, and mean germination time of sweetcorn. With the addition of 300 ppm nano-silica, the germination percentage increased by 40.1%, the germination index by 96%, and the vigor index by 120% over control seeds. The improvement of seed germination by amorphous nano-silica in sweetcorn implies a potential application of nano-silica in seed germination.\",\"PeriodicalId\":14996,\"journal\":{\"name\":\"Journal of Applied and Natural Science\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31018/jans.v15i3.4893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31018/jans.v15i3.4893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

在农业中,纳米材料的利用已经引起了全球的广泛关注。本研究采用开创性的方法来研究纳米二氧化硅对甜玉米种子萌发动力学的影响。以稻壳灰为原料合成了一种非晶纳米二氧化硅材料,并对其对甜玉米种子萌发的影响进行了研究。将提取的纳米二氧化硅颗粒分散在0、100、200、300、400和500 ppm 6种浓度的悬浮液中,研究其对种子萌发的影响。测定了合成的非晶纳米二氧化硅的大小、形状和元素含量。通过透射电子显微镜-选择区电子衍射(ED)图和x射线衍射(XRD)证实了二氧化硅样品的无定形性质,而硅氧烷和硅醇基团主要通过傅里叶变换红外(FT-IR)光谱检测。通过扫描电子显微镜(SEM)获得的图像显示,可能由于团聚而存在原始纳米颗粒和次级微粒。提取的非晶二氧化硅颗粒的平均直径为35 nm。XRD分析表明,纳米二氧化硅粉体为无定形。经EDS分析,提取的二氧化硅样品纯度为96.87%。无定形纳米二氧化硅显著提高了甜玉米的发芽率、发芽指数、活力指数和平均发芽时间。添加300 ppm纳米二氧化硅后,发芽率比对照提高了40.1%,发芽指数提高了96%,活力指数提高了120%。无定形纳米二氧化硅对甜玉米种子萌发的改善预示着纳米二氧化硅在种子萌发中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of rice husk ash-derived silica nanoparticles on sweetcorn (Zea mays L. sachharata) seed germination
In agriculture, the utilization of nanomaterials has garnered significant global attention. This research adopts a pioneering approach to investigate the influence of nanosilica on the germination dynamics of sweetcorn seeds. The present study aimed to synthesize and analyze an amorphous nano-silica material using rice husk ash (RHA) and its impact on the germination of sweetcorn seeds (Zea mays L. sachharata). The extracted nano-silica particles dispersed into six rates of suspensions (0, 100, 200, 300, 400 and 500 ppm) were used to study their effects on seed germination. The synthesized amorphous nano-silica was determined for size, shape, and elemental content. The amorphous nature of the silica sample was confirmed by transmission electron microscopy-selected area electron diffraction (ED) patterns and X-ray diffraction (XRD), whereas siloxane and silanol groups were mainly detected by Fourier-transform infrared (FT-IR) spectroscopy. Image obtained using scanning electron microscopy (SEM) revealed the presence of original nanoparticles alongside secondary microparticles, probably due to agglomeration. Particles in the extracted amorphous silica had an average diameter of 35 nm. Nano-silica powder was amorphous, according to XRD. As per the EDS analysis, the extracted silica sample is 96.87 % pure. The amorphous nano-silica significantly boosted germination metrics such as germination percentage, germination index, vigour index, and mean germination time of sweetcorn. With the addition of 300 ppm nano-silica, the germination percentage increased by 40.1%, the germination index by 96%, and the vigor index by 120% over control seeds. The improvement of seed germination by amorphous nano-silica in sweetcorn implies a potential application of nano-silica in seed germination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Natural Science
Journal of Applied and Natural Science Immunology and Microbiology-Immunology and Microbiology (all)
CiteScore
0.80
自引率
0.00%
发文量
168
期刊最新文献
Contribution to the optimization of citrus (Citrus clementina Hort. Ex Tanaka) fruit fertilization using mobile lysimetry in orchards of the Souss-Massa region, Morocco Identification and characterizations of a few species of Fusarium infecting cucumber in greenhouse conditions Induction of micronuclei in blood and histopathological alterations in gill, kidney and liver of Channa punctatus (Bloch, 1793) exposed to copper sulphate Application of data ratio analysis of lead accumulation in cartilage and bones of goats and chickens in Yogyakarta, Indonesia Development of a parametric-based Analytical Hierarchy Process (AHP) utilizing Geographic Information Systems (GIS) for wheat land suitability evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1