{"title":"使用基于生命周期的指标来支持新西兰鳄梨果园环境绩效的持续改善","authors":"Shreyasi Majumdar, Sarah J. McLaren","doi":"10.1007/s11367-023-02238-x","DOIUrl":null,"url":null,"abstract":"Abstract Purpose A life cycle assessment (LCA) study was undertaken for the orchard stage of the NZ avocado value chain, to guide the development of indicators for facilitating continuous improvement in its environmental profile. Methods The functional unit (FU) was 1 kg Hass avocados produced in NZ, up to the orchard gate. The baseline model assessed avocados produced in fully productive orchards, using input data collected from 49 orchards across 281 ha in the three main avocado growing regions of New Zealand. In addition, the non-productive and low production years of avocado orchards were assessed using data from four newly established avocado operations spread across 489 ha. Climate change, eutrophication, water use, freshwater ecotoxicity and terrestrial ecotoxicity results were calculated for each orchard. Finally, national scores were calculated for each impact category from the weighted averages of the individual orchard results in the baseline sample of the three studied regions. Results There was significant variability between orchards in different input quantities, as well as impact scores. The impact assessment results showed that fuel use and fertiliser/soil conditioner production and use on orchard were consistently the main hotspots for all impact categories except water use, where impacts were generally dominated by indirect water use (irrespective of whether the orchards were irrigated or not). When considering the entire orchard lifespan, the commercially productive stage of the orchard life contributed the most to all impact category results. However, the impacts associated with 1 kg avocados, when allocated based on the total impacts across the orchard lifespan, were 13–26% higher than the baseline results which considered only the commercially productive years of the orchard life. Conclusion The study identified the priority areas for focussed improvement efforts (in particular, fertiliser and fuel use for all impact categories, and agrichemical use for the ecotoxicity impacts). Second, the regional- and national-level impact scores obtained in this study can be used as benchmarks in indicator development to show growers their relative ranking in terms of environmental performance. When using the indicators and benchmarks in a monitoring scheme, consideration should be given to developing separate benchmarks (using area-based functional units) for young orchards. It will also be necessary to develop a better understanding of the reasons for the variability in inputs and impacts so that benchmarks can be tailored to account fairly and equitably for the variability between orchards and regions.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"48 1","pages":"0"},"PeriodicalIF":4.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards use of life cycle–based indicators to support continuous improvement in the environmental performance of avocado orchards in New Zealand\",\"authors\":\"Shreyasi Majumdar, Sarah J. McLaren\",\"doi\":\"10.1007/s11367-023-02238-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose A life cycle assessment (LCA) study was undertaken for the orchard stage of the NZ avocado value chain, to guide the development of indicators for facilitating continuous improvement in its environmental profile. Methods The functional unit (FU) was 1 kg Hass avocados produced in NZ, up to the orchard gate. The baseline model assessed avocados produced in fully productive orchards, using input data collected from 49 orchards across 281 ha in the three main avocado growing regions of New Zealand. In addition, the non-productive and low production years of avocado orchards were assessed using data from four newly established avocado operations spread across 489 ha. Climate change, eutrophication, water use, freshwater ecotoxicity and terrestrial ecotoxicity results were calculated for each orchard. Finally, national scores were calculated for each impact category from the weighted averages of the individual orchard results in the baseline sample of the three studied regions. Results There was significant variability between orchards in different input quantities, as well as impact scores. The impact assessment results showed that fuel use and fertiliser/soil conditioner production and use on orchard were consistently the main hotspots for all impact categories except water use, where impacts were generally dominated by indirect water use (irrespective of whether the orchards were irrigated or not). When considering the entire orchard lifespan, the commercially productive stage of the orchard life contributed the most to all impact category results. However, the impacts associated with 1 kg avocados, when allocated based on the total impacts across the orchard lifespan, were 13–26% higher than the baseline results which considered only the commercially productive years of the orchard life. Conclusion The study identified the priority areas for focussed improvement efforts (in particular, fertiliser and fuel use for all impact categories, and agrichemical use for the ecotoxicity impacts). Second, the regional- and national-level impact scores obtained in this study can be used as benchmarks in indicator development to show growers their relative ranking in terms of environmental performance. When using the indicators and benchmarks in a monitoring scheme, consideration should be given to developing separate benchmarks (using area-based functional units) for young orchards. It will also be necessary to develop a better understanding of the reasons for the variability in inputs and impacts so that benchmarks can be tailored to account fairly and equitably for the variability between orchards and regions.\",\"PeriodicalId\":54952,\"journal\":{\"name\":\"International Journal of Life Cycle Assessment\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Life Cycle Assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11367-023-02238-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Life Cycle Assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11367-023-02238-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Towards use of life cycle–based indicators to support continuous improvement in the environmental performance of avocado orchards in New Zealand
Abstract Purpose A life cycle assessment (LCA) study was undertaken for the orchard stage of the NZ avocado value chain, to guide the development of indicators for facilitating continuous improvement in its environmental profile. Methods The functional unit (FU) was 1 kg Hass avocados produced in NZ, up to the orchard gate. The baseline model assessed avocados produced in fully productive orchards, using input data collected from 49 orchards across 281 ha in the three main avocado growing regions of New Zealand. In addition, the non-productive and low production years of avocado orchards were assessed using data from four newly established avocado operations spread across 489 ha. Climate change, eutrophication, water use, freshwater ecotoxicity and terrestrial ecotoxicity results were calculated for each orchard. Finally, national scores were calculated for each impact category from the weighted averages of the individual orchard results in the baseline sample of the three studied regions. Results There was significant variability between orchards in different input quantities, as well as impact scores. The impact assessment results showed that fuel use and fertiliser/soil conditioner production and use on orchard were consistently the main hotspots for all impact categories except water use, where impacts were generally dominated by indirect water use (irrespective of whether the orchards were irrigated or not). When considering the entire orchard lifespan, the commercially productive stage of the orchard life contributed the most to all impact category results. However, the impacts associated with 1 kg avocados, when allocated based on the total impacts across the orchard lifespan, were 13–26% higher than the baseline results which considered only the commercially productive years of the orchard life. Conclusion The study identified the priority areas for focussed improvement efforts (in particular, fertiliser and fuel use for all impact categories, and agrichemical use for the ecotoxicity impacts). Second, the regional- and national-level impact scores obtained in this study can be used as benchmarks in indicator development to show growers their relative ranking in terms of environmental performance. When using the indicators and benchmarks in a monitoring scheme, consideration should be given to developing separate benchmarks (using area-based functional units) for young orchards. It will also be necessary to develop a better understanding of the reasons for the variability in inputs and impacts so that benchmarks can be tailored to account fairly and equitably for the variability between orchards and regions.
期刊介绍:
The International Journal of Life Cycle Assessment (Int J Life Cycle Assess) is the first journal devoted entirely to Life Cycle Assessment and closely related methods. LCA has become a recognized instrument to assess the ecological burdens and impacts throughout the consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources, through production and use to final disposal. The Int J Life Cycle Assess is a forum for scientists developing LCA and LCM (Life Cycle Management); LCA and LCM practitioners; managers concerned with environmental aspects of products; governmental environmental agencies responsible for product quality; scientific and industrial societies involved in LCA development, and ecological institutions and bodies.