土壤日晒和嫁接对番茄产量及南方根结线虫种群密度的影响

IF 1.5 3区 农林科学 Q2 HORTICULTURE Hortscience Pub Date : 2023-11-01 DOI:10.21273/hortsci17396-23
Rachel E. Rudolph, Victoria Bajek, Misbakhul Munir
{"title":"土壤日晒和嫁接对番茄产量及南方根结线虫种群密度的影响","authors":"Rachel E. Rudolph, Victoria Bajek, Misbakhul Munir","doi":"10.21273/hortsci17396-23","DOIUrl":null,"url":null,"abstract":"High tunnel production has increased in the past 10 years in Kentucky with more than 1500 high tunnels constructed across the state. Tomato is the most popular and most valuable high tunnel crop per square foot. This has contributed to a lack of rotation and increased pressure from root-knot nematodes (RKN; Meloidogyne spp.). Infection by RKN leads to root galling and reduces the host plant’s ability to take up water and nutrients. Sustainable strategies are needed to manage increasing RKN populations for long-term health of high tunnel soils. Soil solarization is a nonchemical management strategy that has shown promise in other regions and in open field systems. Because tunnels are primarily used to produce high-value crops and are often used for season extension, solarizing during the off-season would be the most beneficial for growers because solarizing would require taking the tunnel out of production. The primary objective of this study was to determine whether springtime soil solarization in Kentucky high tunnels followed by use of resistant tomato cultivars is a viable and effective management strategy for RKN populations. Soil solarization was performed in two commercial high tunnels naturally infested with southern RKN ( Meloidogyne incognita ) for 2, 4, and 6 weeks and compared with a nonsolarized control. Soil temperatures reached during solarization were assessed at 7.6-, 15.2-, and 22.8-cm soil depth. After solarization, tomato was transplanted, including ‘Cherokee Carbon’ grafted onto RKN-resistant rootstocks ‘Fortamino’ and ‘Estamino’, RKN-resistant nongrafted ‘Caimon’, and susceptible ‘Cherokee Carbon’ as the control. The highest soil temperature achieved was 50 °C during 6 weeks of solarization at 7.6-cm soil depth compared with 38 °C reached in nonsolarized soil. Soil population densities of RKN increased each month after solarization and were generally lower after solarization with resistant tomato cultivars. The interaction of soil solarization and tomato cultivars was significant with respect to RKN densities in soil and roots. The mean RKN soil and root population densities in the nonsolarized, nonresistant treatment combination was significantly greater compared with all other treatments ( P < 0.0001). Population densities of RKN were significantly higher in the nonsolarized control compared with solarized treatments ( P = 0.0002). Nongrafted ‘Cherokee Carbon’ had significantly more RKN in surrounding soil compared with all other tomato treatments. Tomato yield was unaffected by soil solarization, but there were significant differences based on tomato cultivars alone; nongrafted ‘Cherokee Carbon’ yielded less than the resistant ‘Caimon’. Together, solarization and resistant cultivars reduced RKN population densities in soil and roots, which can provide growers with a nonchemical approach for long-term RKN management and high tunnel resiliency.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":"363 7","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Soil Solarization and Grafting on Tomato Yield and Southern Root-knot Nematode Population Densities\",\"authors\":\"Rachel E. Rudolph, Victoria Bajek, Misbakhul Munir\",\"doi\":\"10.21273/hortsci17396-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High tunnel production has increased in the past 10 years in Kentucky with more than 1500 high tunnels constructed across the state. Tomato is the most popular and most valuable high tunnel crop per square foot. This has contributed to a lack of rotation and increased pressure from root-knot nematodes (RKN; Meloidogyne spp.). Infection by RKN leads to root galling and reduces the host plant’s ability to take up water and nutrients. Sustainable strategies are needed to manage increasing RKN populations for long-term health of high tunnel soils. Soil solarization is a nonchemical management strategy that has shown promise in other regions and in open field systems. Because tunnels are primarily used to produce high-value crops and are often used for season extension, solarizing during the off-season would be the most beneficial for growers because solarizing would require taking the tunnel out of production. The primary objective of this study was to determine whether springtime soil solarization in Kentucky high tunnels followed by use of resistant tomato cultivars is a viable and effective management strategy for RKN populations. Soil solarization was performed in two commercial high tunnels naturally infested with southern RKN ( Meloidogyne incognita ) for 2, 4, and 6 weeks and compared with a nonsolarized control. Soil temperatures reached during solarization were assessed at 7.6-, 15.2-, and 22.8-cm soil depth. After solarization, tomato was transplanted, including ‘Cherokee Carbon’ grafted onto RKN-resistant rootstocks ‘Fortamino’ and ‘Estamino’, RKN-resistant nongrafted ‘Caimon’, and susceptible ‘Cherokee Carbon’ as the control. The highest soil temperature achieved was 50 °C during 6 weeks of solarization at 7.6-cm soil depth compared with 38 °C reached in nonsolarized soil. Soil population densities of RKN increased each month after solarization and were generally lower after solarization with resistant tomato cultivars. The interaction of soil solarization and tomato cultivars was significant with respect to RKN densities in soil and roots. The mean RKN soil and root population densities in the nonsolarized, nonresistant treatment combination was significantly greater compared with all other treatments ( P < 0.0001). Population densities of RKN were significantly higher in the nonsolarized control compared with solarized treatments ( P = 0.0002). Nongrafted ‘Cherokee Carbon’ had significantly more RKN in surrounding soil compared with all other tomato treatments. Tomato yield was unaffected by soil solarization, but there were significant differences based on tomato cultivars alone; nongrafted ‘Cherokee Carbon’ yielded less than the resistant ‘Caimon’. Together, solarization and resistant cultivars reduced RKN population densities in soil and roots, which can provide growers with a nonchemical approach for long-term RKN management and high tunnel resiliency.\",\"PeriodicalId\":13140,\"journal\":{\"name\":\"Hortscience\",\"volume\":\"363 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hortscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21273/hortsci17396-23\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21273/hortsci17396-23","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

在过去的10年里,肯塔基州的高隧道产量有所增加,在全州建造了1500多条高隧道。番茄是每平方英尺最受欢迎和最有价值的高隧道作物。这导致了缺乏轮作和来自根结线虫(RKN;有spp)。RKN的感染会导致根系损伤,降低寄主植物吸收水分和养分的能力。需要采取可持续的战略来管理不断增加的RKN种群,以保证高隧道土壤的长期健康。土壤日晒是一种非化学管理策略,在其他地区和开放农田系统中显示出前景。由于隧道主要用于生产高价值作物,并且经常用于延长季节,因此在淡季进行日光照射对种植者来说是最有利的,因为日光照射需要将隧道从生产中移除。本研究的主要目的是确定肯塔基州高隧道春季土壤日晒后使用抗性番茄品种是否是一种可行和有效的RKN种群管理策略。研究人员在两个自然感染南方RKN (Meloidogyne incognita)的商业高隧道中进行了土壤日晒,为期2周、4周和6周,并与未日晒的对照进行了比较。在7.6 cm、15.2 cm和22.8 cm土壤深度评估日光照射期间达到的土壤温度。晒后移栽番茄,包括‘切罗基碳’嫁接到抗rkn砧木‘Fortamino’和‘Estamino’上,‘Caimon’嫁接到抗rkn的砧木上,‘切罗基碳’作为对照。在7.6 cm土壤深度,光照6周达到的最高土壤温度为50°C,而非光照土壤达到38°C。日晒后土壤RKN种群密度逐月增加,抗性番茄品种日晒后总体较低。土壤光照与番茄品种对土壤和根系RKN密度的交互作用显著。非日光、非抗性处理组合的平均RKN土壤和根系种群密度显著高于其他所有处理(P <0.0001)。未日光处理的RKN种群密度显著高于日光处理(P = 0.0002)。与其他番茄处理相比,未嫁接的“切诺基碳”在周围土壤中的RKN显著增加。番茄产量不受土壤日晒的影响,但不同品种间存在显著差异;未嫁接的“切罗基碳”产量低于抗性的“凯门”。光照和抗性品种共同降低了RKN在土壤和根系中的种群密度,这可以为种植者提供长期RKN管理和高隧道弹性的非化学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Soil Solarization and Grafting on Tomato Yield and Southern Root-knot Nematode Population Densities
High tunnel production has increased in the past 10 years in Kentucky with more than 1500 high tunnels constructed across the state. Tomato is the most popular and most valuable high tunnel crop per square foot. This has contributed to a lack of rotation and increased pressure from root-knot nematodes (RKN; Meloidogyne spp.). Infection by RKN leads to root galling and reduces the host plant’s ability to take up water and nutrients. Sustainable strategies are needed to manage increasing RKN populations for long-term health of high tunnel soils. Soil solarization is a nonchemical management strategy that has shown promise in other regions and in open field systems. Because tunnels are primarily used to produce high-value crops and are often used for season extension, solarizing during the off-season would be the most beneficial for growers because solarizing would require taking the tunnel out of production. The primary objective of this study was to determine whether springtime soil solarization in Kentucky high tunnels followed by use of resistant tomato cultivars is a viable and effective management strategy for RKN populations. Soil solarization was performed in two commercial high tunnels naturally infested with southern RKN ( Meloidogyne incognita ) for 2, 4, and 6 weeks and compared with a nonsolarized control. Soil temperatures reached during solarization were assessed at 7.6-, 15.2-, and 22.8-cm soil depth. After solarization, tomato was transplanted, including ‘Cherokee Carbon’ grafted onto RKN-resistant rootstocks ‘Fortamino’ and ‘Estamino’, RKN-resistant nongrafted ‘Caimon’, and susceptible ‘Cherokee Carbon’ as the control. The highest soil temperature achieved was 50 °C during 6 weeks of solarization at 7.6-cm soil depth compared with 38 °C reached in nonsolarized soil. Soil population densities of RKN increased each month after solarization and were generally lower after solarization with resistant tomato cultivars. The interaction of soil solarization and tomato cultivars was significant with respect to RKN densities in soil and roots. The mean RKN soil and root population densities in the nonsolarized, nonresistant treatment combination was significantly greater compared with all other treatments ( P < 0.0001). Population densities of RKN were significantly higher in the nonsolarized control compared with solarized treatments ( P = 0.0002). Nongrafted ‘Cherokee Carbon’ had significantly more RKN in surrounding soil compared with all other tomato treatments. Tomato yield was unaffected by soil solarization, but there were significant differences based on tomato cultivars alone; nongrafted ‘Cherokee Carbon’ yielded less than the resistant ‘Caimon’. Together, solarization and resistant cultivars reduced RKN population densities in soil and roots, which can provide growers with a nonchemical approach for long-term RKN management and high tunnel resiliency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hortscience
Hortscience 农林科学-园艺
CiteScore
3.00
自引率
10.50%
发文量
224
审稿时长
3 months
期刊介绍: HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.
期刊最新文献
Traffic Tolerance of Perennial Ryegrass (Lolium perenne L.) Cultivars as Affected by Nitrogen Fertilization Own-rooted Walnut Propagule of Four Walnut (Juglans) Rootstocks and Main Cultivated Cultivar Liaoning 1 Acquirement through Layering under Field Conditions Genetic Variability of Traffic Tolerance and Surface Playability of Bermudagrass (Cynodon spp.) under Fall Simulated Traffic Stress Ning Qing 4: A New Holly Cultivar with Elliptic and Serrated Leaves ‘Ning Qing 2’: A New Dwarf Holly Cultivar with Small Serrated Leaves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1