{"title":"不定3-Sasaki结构的紧凑化及其四元凯勒商数","authors":"A. Rod Gover, Katharina Neusser, Travis Willse","doi":"10.1007/s10231-023-01385-0","DOIUrl":null,"url":null,"abstract":"<div><p>We show that 3-Sasaki structures admit a natural description in terms of projective differential geometry. First we establish that a 3-Sasaki structure may be understood as a projective structure whose tractor connection admits a holonomy reduction, satisfying a particular non-vanishing condition, to the (possibly indefinite) unitary quaternionic group <span>\\({\\text {Sp}}(p,q)\\)</span>. Moreover, we show that, if a holonomy reduction to <span>\\({\\text {Sp}}(p,q)\\)</span> of the tractor connection of a projective structure does not satisfy this condition, then it decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) 3-Sasaki structures and a closed separating hypersurface at infinity with respect to the 3-Sasaki metrics. It is shown that the latter hypersurface inherits a Biquard–Fefferman conformal structure, which thus (locally) fibers over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the 3-Sasaki structures on the open manifolds. As an application, we describe the projective compactification of (suitably) complete, non-compact (indefinite) 3-Sasaki manifolds and recover Biquard’s notion of asymptotically hyperbolic quaternionic Kähler metrics.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01385-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Compactifications of indefinite 3-Sasaki structures and their quaternionic Kähler quotients\",\"authors\":\"A. Rod Gover, Katharina Neusser, Travis Willse\",\"doi\":\"10.1007/s10231-023-01385-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that 3-Sasaki structures admit a natural description in terms of projective differential geometry. First we establish that a 3-Sasaki structure may be understood as a projective structure whose tractor connection admits a holonomy reduction, satisfying a particular non-vanishing condition, to the (possibly indefinite) unitary quaternionic group <span>\\\\({\\\\text {Sp}}(p,q)\\\\)</span>. Moreover, we show that, if a holonomy reduction to <span>\\\\({\\\\text {Sp}}(p,q)\\\\)</span> of the tractor connection of a projective structure does not satisfy this condition, then it decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) 3-Sasaki structures and a closed separating hypersurface at infinity with respect to the 3-Sasaki metrics. It is shown that the latter hypersurface inherits a Biquard–Fefferman conformal structure, which thus (locally) fibers over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the 3-Sasaki structures on the open manifolds. As an application, we describe the projective compactification of (suitably) complete, non-compact (indefinite) 3-Sasaki manifolds and recover Biquard’s notion of asymptotically hyperbolic quaternionic Kähler metrics.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01385-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01385-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01385-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compactifications of indefinite 3-Sasaki structures and their quaternionic Kähler quotients
We show that 3-Sasaki structures admit a natural description in terms of projective differential geometry. First we establish that a 3-Sasaki structure may be understood as a projective structure whose tractor connection admits a holonomy reduction, satisfying a particular non-vanishing condition, to the (possibly indefinite) unitary quaternionic group \({\text {Sp}}(p,q)\). Moreover, we show that, if a holonomy reduction to \({\text {Sp}}(p,q)\) of the tractor connection of a projective structure does not satisfy this condition, then it decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) 3-Sasaki structures and a closed separating hypersurface at infinity with respect to the 3-Sasaki metrics. It is shown that the latter hypersurface inherits a Biquard–Fefferman conformal structure, which thus (locally) fibers over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the 3-Sasaki structures on the open manifolds. As an application, we describe the projective compactification of (suitably) complete, non-compact (indefinite) 3-Sasaki manifolds and recover Biquard’s notion of asymptotically hyperbolic quaternionic Kähler metrics.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.