合成工艺对Fe3O4磁性纳米颗粒形成的影响

AKA, Cemal , AKYOL, Mustafa
{"title":"合成工艺对Fe3O4磁性纳米颗粒形成的影响","authors":"AKA, Cemal\n , AKYOL, Mustafa\n ","doi":"10.17776/csj.1284327","DOIUrl":null,"url":null,"abstract":"In this work, the effect of synthesizing process on the morphology, structure, and magnetic properties of Fe3O4 magnetic nanoparticles have been studied by performing X-ray diffraction, scanning electronic microscopy, and vibrating sample magnetometer measurements. Fe3O4 nanoparticles were synthesized by hydrothermal and solvothermal methods. X-ray diffraction analysis revealed that both samples have cubic crystal phase. However, Fe2O3 impurity peaks were observed in the sample synthesized by hydrothermal method. The crystallite sizes of samples synthesized by hydrothermal and solvothermal methods were approximately 38 and 24 nm, respectively. The scanning electron microscope images show that spherical porous and cubic shape Fe3O4 nanoparticles were obtained by solvothermal and hydrothermal method, respectively. The average particle sizes of Fe3O4 samples synthesized by hydrothermal and solvothermal methods were determined as 220 and 450 nm, respectively. Both samples behave a soft ferromagnetic characteristic having almost zero coercive field. The magnetic saturation values of Fe3O4 nanoparticles synthesized by hydrothermal and solvothermal methods were determined as 28.78 and 77.31 emu/g, respectively. As a result of the characterizations, porous Fe3O4 nanoparticles synthesized by solvothermal method show better crystal structure, morphological and magnetic properties than Fe3O4 nanoparticles synthesized by hydrothermal method.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Synthesizing Process on the Formation of Fe3O4 Magnetic Nanoparticles\",\"authors\":\"AKA, Cemal\\n , AKYOL, Mustafa\\n \",\"doi\":\"10.17776/csj.1284327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effect of synthesizing process on the morphology, structure, and magnetic properties of Fe3O4 magnetic nanoparticles have been studied by performing X-ray diffraction, scanning electronic microscopy, and vibrating sample magnetometer measurements. Fe3O4 nanoparticles were synthesized by hydrothermal and solvothermal methods. X-ray diffraction analysis revealed that both samples have cubic crystal phase. However, Fe2O3 impurity peaks were observed in the sample synthesized by hydrothermal method. The crystallite sizes of samples synthesized by hydrothermal and solvothermal methods were approximately 38 and 24 nm, respectively. The scanning electron microscope images show that spherical porous and cubic shape Fe3O4 nanoparticles were obtained by solvothermal and hydrothermal method, respectively. The average particle sizes of Fe3O4 samples synthesized by hydrothermal and solvothermal methods were determined as 220 and 450 nm, respectively. Both samples behave a soft ferromagnetic characteristic having almost zero coercive field. The magnetic saturation values of Fe3O4 nanoparticles synthesized by hydrothermal and solvothermal methods were determined as 28.78 and 77.31 emu/g, respectively. As a result of the characterizations, porous Fe3O4 nanoparticles synthesized by solvothermal method show better crystal structure, morphological and magnetic properties than Fe3O4 nanoparticles synthesized by hydrothermal method.\",\"PeriodicalId\":10906,\"journal\":{\"name\":\"Cumhuriyet Science Journal\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cumhuriyet Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17776/csj.1284327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1284327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过x射线衍射、扫描电镜和振动样品磁强计测量,研究了合成工艺对Fe3O4磁性纳米颗粒形貌、结构和磁性能的影响。采用水热法和溶剂热法合成了纳米Fe3O4。x射线衍射分析表明,两种样品均具有立方晶相。水热法合成的样品中存在Fe2O3杂质峰。水热法和溶剂热法合成的样品晶粒尺寸分别约为38 nm和24 nm。扫描电镜图像显示,溶剂热法和水热法制备的Fe3O4纳米颗粒分别为球形、多孔和立方形状。水热法和溶剂热法合成的Fe3O4样品的平均粒径分别为220 nm和450 nm。两种样品均表现为软磁特性,矫顽场几乎为零。水热法和溶剂热法合成的Fe3O4纳米颗粒的磁饱和值分别为28.78和77.31 emu/g。表征结果表明,溶剂热法制备的多孔Fe3O4纳米颗粒比水热法制备的Fe3O4纳米颗粒具有更好的晶体结构、形貌和磁性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Synthesizing Process on the Formation of Fe3O4 Magnetic Nanoparticles
In this work, the effect of synthesizing process on the morphology, structure, and magnetic properties of Fe3O4 magnetic nanoparticles have been studied by performing X-ray diffraction, scanning electronic microscopy, and vibrating sample magnetometer measurements. Fe3O4 nanoparticles were synthesized by hydrothermal and solvothermal methods. X-ray diffraction analysis revealed that both samples have cubic crystal phase. However, Fe2O3 impurity peaks were observed in the sample synthesized by hydrothermal method. The crystallite sizes of samples synthesized by hydrothermal and solvothermal methods were approximately 38 and 24 nm, respectively. The scanning electron microscope images show that spherical porous and cubic shape Fe3O4 nanoparticles were obtained by solvothermal and hydrothermal method, respectively. The average particle sizes of Fe3O4 samples synthesized by hydrothermal and solvothermal methods were determined as 220 and 450 nm, respectively. Both samples behave a soft ferromagnetic characteristic having almost zero coercive field. The magnetic saturation values of Fe3O4 nanoparticles synthesized by hydrothermal and solvothermal methods were determined as 28.78 and 77.31 emu/g, respectively. As a result of the characterizations, porous Fe3O4 nanoparticles synthesized by solvothermal method show better crystal structure, morphological and magnetic properties than Fe3O4 nanoparticles synthesized by hydrothermal method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
期刊最新文献
Removal of Bromophenol Blue from Aqueous Solution Using Bentonite, Zeolite and Graphene Oxide Crocus Officinalis (L.) Extract on Human Colerectal Cancer Cell Line (HT-22): Investigation in Vitro Asymptotic Relative Efficiency Comparison for some Fit Indices in Structural Equation Modeling Electrospun Poly(ϵ-caprolactone) Nanofibers Containing Pomegranate Peel Extract and Bioactive Glass as Potential Wound Dressings Aloe vera Gel Extract Prolongs Lifespan in Caenorhabditis elegans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1