{"title":"线性和非线性预测模型预测脑卒中患者使用非机动康复装置的运动评估量表","authors":"Sulaiman Mazlan","doi":"10.30880/ijie.2023.15.04.020","DOIUrl":null,"url":null,"abstract":"Various predictive models, both linear and non-linear, such as Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Artificial Neural Network (ANN), were frequently employed for predicting the clinical scores of stroke patients. Nonetheless, the effectiveness of these predictive models is somewhat impacted by how features are selected from the data to serve as inputs for the model. Hence, it's crucial to explore an ideal feature selection method to attain the most accurate prediction performance. This study primarily aims to evaluate the performance of two non-motorized three-degree-of-freedom devices, namely iRest and ReHAD using MLR, PLS and ANN predictive models and to examine the usefulness of including a hand grip function with the assessment device. The results reveal that ReHAD coupled with non-linear model (i.e. ANN) has a better prediction performance compared to iRest and at once proving that by including the hand grip function into the assessment device may increase the prediction accuracy in predicting Motor Assessment Scale (MAS) score of stroke subjects. Furthermore, these findings imply that there is a substantial association between kinematic variables and MAS scores, and as such the ANN model with a feature selection of twelve kinematic variables can predict stroke patients' MAS scores.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and Non-Linear Predictive Models in Predicting Motor Assessment Scale of Stroke Patients Using Non-Motorized Rehabilitation Device\",\"authors\":\"Sulaiman Mazlan\",\"doi\":\"10.30880/ijie.2023.15.04.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various predictive models, both linear and non-linear, such as Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Artificial Neural Network (ANN), were frequently employed for predicting the clinical scores of stroke patients. Nonetheless, the effectiveness of these predictive models is somewhat impacted by how features are selected from the data to serve as inputs for the model. Hence, it's crucial to explore an ideal feature selection method to attain the most accurate prediction performance. This study primarily aims to evaluate the performance of two non-motorized three-degree-of-freedom devices, namely iRest and ReHAD using MLR, PLS and ANN predictive models and to examine the usefulness of including a hand grip function with the assessment device. The results reveal that ReHAD coupled with non-linear model (i.e. ANN) has a better prediction performance compared to iRest and at once proving that by including the hand grip function into the assessment device may increase the prediction accuracy in predicting Motor Assessment Scale (MAS) score of stroke subjects. Furthermore, these findings imply that there is a substantial association between kinematic variables and MAS scores, and as such the ANN model with a feature selection of twelve kinematic variables can predict stroke patients' MAS scores.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.04.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.04.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Linear and Non-Linear Predictive Models in Predicting Motor Assessment Scale of Stroke Patients Using Non-Motorized Rehabilitation Device
Various predictive models, both linear and non-linear, such as Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Artificial Neural Network (ANN), were frequently employed for predicting the clinical scores of stroke patients. Nonetheless, the effectiveness of these predictive models is somewhat impacted by how features are selected from the data to serve as inputs for the model. Hence, it's crucial to explore an ideal feature selection method to attain the most accurate prediction performance. This study primarily aims to evaluate the performance of two non-motorized three-degree-of-freedom devices, namely iRest and ReHAD using MLR, PLS and ANN predictive models and to examine the usefulness of including a hand grip function with the assessment device. The results reveal that ReHAD coupled with non-linear model (i.e. ANN) has a better prediction performance compared to iRest and at once proving that by including the hand grip function into the assessment device may increase the prediction accuracy in predicting Motor Assessment Scale (MAS) score of stroke subjects. Furthermore, these findings imply that there is a substantial association between kinematic variables and MAS scores, and as such the ANN model with a feature selection of twelve kinematic variables can predict stroke patients' MAS scores.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.