Manoylo V., Arhun Shch., Migal V., Hnatova H., Korohodskyi V., Zenkin E., Shevchenko I.
{"title":"Kraz卡车燃气转换用电磁加油机的动态及流量特性评估","authors":"Manoylo V., Arhun Shch., Migal V., Hnatova H., Korohodskyi V., Zenkin E., Shevchenko I.","doi":"10.30880/ijie.2023.15.04.013","DOIUrl":null,"url":null,"abstract":"The problems of worldwide environmental degradation, global warming, scarcity of fossil fuels hascaused the replacement of ICE vehicles with electric ones. For the countries with underdeveloped economy, it is important to find more affordable ways to solve this problem. One of them is to convert the cars with ICE into more environmentally friendly and economical ones, such as gas-powered cars. Yet, the conversion of diesel cars usually results in power loss. The work of the electromagnetic gas dispenser (EGD) of the engine power supply system significantly affects the efficiency of the gas engine. Therefore, the aim of the study was to determine the dynamic and flowcharacteristics of the EGD of the KrAZ truck (Ukraine) converted to gas, and to provide recommendations for improving the efficiency of its operation. The object of the research was the working processes of the EGD power supply system of 6ChGN13/14 engine, converted from diesel engine and equipped with a gas turbine supercharger. The paper presents the results of experimental studies on determining the effect of operating voltage on the dynamic characteristics of EGD. The dependences of dynamic and flow characteristics of the EGD on the change of the control signal frequency and the dependence of efficiency through the EGD flow nozzle on the control signal duration were obtained; the effect of the return spring stiffness on the dynamic and flow characteristics of the EGD were determined. The results of the work are designed to increase the efficiency of diesel trucks converted to gas.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"163 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Dynamic and Flow Characteristics of Electromagnetic Dispenser for The Kraz Truck Converted to Gas\",\"authors\":\"Manoylo V., Arhun Shch., Migal V., Hnatova H., Korohodskyi V., Zenkin E., Shevchenko I.\",\"doi\":\"10.30880/ijie.2023.15.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problems of worldwide environmental degradation, global warming, scarcity of fossil fuels hascaused the replacement of ICE vehicles with electric ones. For the countries with underdeveloped economy, it is important to find more affordable ways to solve this problem. One of them is to convert the cars with ICE into more environmentally friendly and economical ones, such as gas-powered cars. Yet, the conversion of diesel cars usually results in power loss. The work of the electromagnetic gas dispenser (EGD) of the engine power supply system significantly affects the efficiency of the gas engine. Therefore, the aim of the study was to determine the dynamic and flowcharacteristics of the EGD of the KrAZ truck (Ukraine) converted to gas, and to provide recommendations for improving the efficiency of its operation. The object of the research was the working processes of the EGD power supply system of 6ChGN13/14 engine, converted from diesel engine and equipped with a gas turbine supercharger. The paper presents the results of experimental studies on determining the effect of operating voltage on the dynamic characteristics of EGD. The dependences of dynamic and flow characteristics of the EGD on the change of the control signal frequency and the dependence of efficiency through the EGD flow nozzle on the control signal duration were obtained; the effect of the return spring stiffness on the dynamic and flow characteristics of the EGD were determined. The results of the work are designed to increase the efficiency of diesel trucks converted to gas.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.04.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.04.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimating Dynamic and Flow Characteristics of Electromagnetic Dispenser for The Kraz Truck Converted to Gas
The problems of worldwide environmental degradation, global warming, scarcity of fossil fuels hascaused the replacement of ICE vehicles with electric ones. For the countries with underdeveloped economy, it is important to find more affordable ways to solve this problem. One of them is to convert the cars with ICE into more environmentally friendly and economical ones, such as gas-powered cars. Yet, the conversion of diesel cars usually results in power loss. The work of the electromagnetic gas dispenser (EGD) of the engine power supply system significantly affects the efficiency of the gas engine. Therefore, the aim of the study was to determine the dynamic and flowcharacteristics of the EGD of the KrAZ truck (Ukraine) converted to gas, and to provide recommendations for improving the efficiency of its operation. The object of the research was the working processes of the EGD power supply system of 6ChGN13/14 engine, converted from diesel engine and equipped with a gas turbine supercharger. The paper presents the results of experimental studies on determining the effect of operating voltage on the dynamic characteristics of EGD. The dependences of dynamic and flow characteristics of the EGD on the change of the control signal frequency and the dependence of efficiency through the EGD flow nozzle on the control signal duration were obtained; the effect of the return spring stiffness on the dynamic and flow characteristics of the EGD were determined. The results of the work are designed to increase the efficiency of diesel trucks converted to gas.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.