来自蓝藻的生物燃料——一种代谢工程方法

IF 0.7 Q4 PLANT SCIENCES Plant Science Today Pub Date : 2023-11-10 DOI:10.14719/pst.2505
P Pooja, K Edison Lekshmi, Pradeep N S
{"title":"来自蓝藻的生物燃料——一种代谢工程方法","authors":"P Pooja, K Edison Lekshmi, Pradeep N S","doi":"10.14719/pst.2505","DOIUrl":null,"url":null,"abstract":"The concern about the limited availability of petroleum-based fuels and their role in increasing CO2 levels in the atmosphere has sparked significant attention toward biofuel and bioenergy production. The global pursuit of sustainable energy sources has catalyzed innovative research into alternative biofuel production strategies. Transforming CO2 into usable fuels and chemicals is gaining even more prominence. Cyanobacteria, renowned for their photosynthetic ability, have emerged as promising candidates for biofuel synthesis. Their ability to convert solar energy and carbon dioxide into valuable biofuels makes them a compelling avenue for sustainable energy solutions. Using metabolic engineering principles, researchers have endeavored to optimize cyanobacterial metabolic pathways, enhance photosynthetic efficiency, and redirect carbon flux toward biofuel precursors. Numerous species of cyanobacteria offer genetic and metabolic traits that facilitate manipulation, and their photosynthetic characteristics imply that carbohydrates, fatty acids, and even alcohol could serve as potential renewable sources for biofuels. This review showcases cyanobacteria's ability as a biofuel source and emphasizes the transformative influence of metabolic engineering employed in the creation and production of \"cyanofuels”","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"120 13","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofuels from cyanobacteria -a metabolic engineering approach\",\"authors\":\"P Pooja, K Edison Lekshmi, Pradeep N S\",\"doi\":\"10.14719/pst.2505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concern about the limited availability of petroleum-based fuels and their role in increasing CO2 levels in the atmosphere has sparked significant attention toward biofuel and bioenergy production. The global pursuit of sustainable energy sources has catalyzed innovative research into alternative biofuel production strategies. Transforming CO2 into usable fuels and chemicals is gaining even more prominence. Cyanobacteria, renowned for their photosynthetic ability, have emerged as promising candidates for biofuel synthesis. Their ability to convert solar energy and carbon dioxide into valuable biofuels makes them a compelling avenue for sustainable energy solutions. Using metabolic engineering principles, researchers have endeavored to optimize cyanobacterial metabolic pathways, enhance photosynthetic efficiency, and redirect carbon flux toward biofuel precursors. Numerous species of cyanobacteria offer genetic and metabolic traits that facilitate manipulation, and their photosynthetic characteristics imply that carbohydrates, fatty acids, and even alcohol could serve as potential renewable sources for biofuels. This review showcases cyanobacteria's ability as a biofuel source and emphasizes the transformative influence of metabolic engineering employed in the creation and production of \\\"cyanofuels”\",\"PeriodicalId\":20236,\"journal\":{\"name\":\"Plant Science Today\",\"volume\":\"120 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14719/pst.2505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人们对石油基燃料的有限性及其在大气中二氧化碳含量增加中的作用的担忧,引发了对生物燃料和生物能源生产的极大关注。全球对可持续能源的追求促进了对替代生物燃料生产战略的创新研究。将二氧化碳转化为可用的燃料和化学物质正变得更加重要。蓝藻以其光合作用能力而闻名,已成为生物燃料合成的有希望的候选者。它们将太阳能和二氧化碳转化为有价值的生物燃料的能力使它们成为可持续能源解决方案的一个引人注目的途径。利用代谢工程原理,研究人员努力优化蓝藻的代谢途径,提高光合效率,并将碳通量转向生物燃料前体。许多种类的蓝藻具有易于操作的遗传和代谢特征,它们的光合特性意味着碳水化合物、脂肪酸甚至酒精都可以作为生物燃料的潜在可再生资源。这篇综述展示了蓝藻作为生物燃料的能力,并强调了代谢工程在“蓝藻燃料”的创造和生产中的变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biofuels from cyanobacteria -a metabolic engineering approach
The concern about the limited availability of petroleum-based fuels and their role in increasing CO2 levels in the atmosphere has sparked significant attention toward biofuel and bioenergy production. The global pursuit of sustainable energy sources has catalyzed innovative research into alternative biofuel production strategies. Transforming CO2 into usable fuels and chemicals is gaining even more prominence. Cyanobacteria, renowned for their photosynthetic ability, have emerged as promising candidates for biofuel synthesis. Their ability to convert solar energy and carbon dioxide into valuable biofuels makes them a compelling avenue for sustainable energy solutions. Using metabolic engineering principles, researchers have endeavored to optimize cyanobacterial metabolic pathways, enhance photosynthetic efficiency, and redirect carbon flux toward biofuel precursors. Numerous species of cyanobacteria offer genetic and metabolic traits that facilitate manipulation, and their photosynthetic characteristics imply that carbohydrates, fatty acids, and even alcohol could serve as potential renewable sources for biofuels. This review showcases cyanobacteria's ability as a biofuel source and emphasizes the transformative influence of metabolic engineering employed in the creation and production of "cyanofuels”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Science Today
Plant Science Today PLANT SCIENCES-
CiteScore
1.50
自引率
11.10%
发文量
177
期刊最新文献
Effects of hydrophilic and lipophilic emulsifier concentrations on the characteristics of Germander essential oil nanoemulsions prepared using the nanoprecipitation technique Optimization of a soil type prediction method based on the deep learning model and vegetation characteristics Phytochemicals Analysis and Antioxidant Potential of Hydroalcoholic Extracts of Fresh Fruits of Pistacia atlantica and Pistacia khinjuk Evaluation of zinc application methods and integrated nutrient management on variation in growth, yield and yield contributing factors in wheat Evaluation of the suitability of three weed species as alternative cover crops in smallholder oil palm plantations through plant spacing management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1