{"title":"寒区路面气候响应的整体多物理场模拟","authors":"Yusheng Jiang, Xiong Yu","doi":"10.1186/s43065-023-00090-9","DOIUrl":null,"url":null,"abstract":"Abstract In cold regions, the environment dynamics lead to variations of soil temperature, water content, and deformation, which are characterized by highly coupled physical interplay. The hydraulic and thermal properties of unsaturated soils are highly nonlinear, which is further complicated when subjected to freezing. This paper presents a comprehensive multiphysics coupling model to evaluate these complex processes. The model considers the behaviors of unsaturated frozen soils. It accounts for the influences of meteorological, geothermal, and hydrological factors. The model is validated through two pavement case studies using Long-Term Pavement Performance (LTPP) road section data. The first case analysis is performed for a pavement section in Vermont, and the simulation lasted for 30 days during a non-freezing season on an hourly basis. The results validated the performance of the model considering unsaturated soil behaviors. The second case study is based on a daily analysis of a pavement section in South Dakota over a freezing–thawing cycle over 194 days. The results validated the model in considering the frozen unsaturated soil behaviors. Both case studies demonstrate the performance of this comprehensive model in quantifying the spatial and temporal variations of soil temperature and water content in response to environmental stressors. The capability of the model in accurately predicting the responses of pavement to the meteorological factors unleashes the potential of this model to assess the effects of climate and climate change on cold region pavement, as well as other types of geo-structures.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"106 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holistic multiphysics simulation of climatic responses of cold region pavements\",\"authors\":\"Yusheng Jiang, Xiong Yu\",\"doi\":\"10.1186/s43065-023-00090-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In cold regions, the environment dynamics lead to variations of soil temperature, water content, and deformation, which are characterized by highly coupled physical interplay. The hydraulic and thermal properties of unsaturated soils are highly nonlinear, which is further complicated when subjected to freezing. This paper presents a comprehensive multiphysics coupling model to evaluate these complex processes. The model considers the behaviors of unsaturated frozen soils. It accounts for the influences of meteorological, geothermal, and hydrological factors. The model is validated through two pavement case studies using Long-Term Pavement Performance (LTPP) road section data. The first case analysis is performed for a pavement section in Vermont, and the simulation lasted for 30 days during a non-freezing season on an hourly basis. The results validated the performance of the model considering unsaturated soil behaviors. The second case study is based on a daily analysis of a pavement section in South Dakota over a freezing–thawing cycle over 194 days. The results validated the model in considering the frozen unsaturated soil behaviors. Both case studies demonstrate the performance of this comprehensive model in quantifying the spatial and temporal variations of soil temperature and water content in response to environmental stressors. The capability of the model in accurately predicting the responses of pavement to the meteorological factors unleashes the potential of this model to assess the effects of climate and climate change on cold region pavement, as well as other types of geo-structures.\",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"106 32\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43065-023-00090-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-023-00090-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holistic multiphysics simulation of climatic responses of cold region pavements
Abstract In cold regions, the environment dynamics lead to variations of soil temperature, water content, and deformation, which are characterized by highly coupled physical interplay. The hydraulic and thermal properties of unsaturated soils are highly nonlinear, which is further complicated when subjected to freezing. This paper presents a comprehensive multiphysics coupling model to evaluate these complex processes. The model considers the behaviors of unsaturated frozen soils. It accounts for the influences of meteorological, geothermal, and hydrological factors. The model is validated through two pavement case studies using Long-Term Pavement Performance (LTPP) road section data. The first case analysis is performed for a pavement section in Vermont, and the simulation lasted for 30 days during a non-freezing season on an hourly basis. The results validated the performance of the model considering unsaturated soil behaviors. The second case study is based on a daily analysis of a pavement section in South Dakota over a freezing–thawing cycle over 194 days. The results validated the model in considering the frozen unsaturated soil behaviors. Both case studies demonstrate the performance of this comprehensive model in quantifying the spatial and temporal variations of soil temperature and water content in response to environmental stressors. The capability of the model in accurately predicting the responses of pavement to the meteorological factors unleashes the potential of this model to assess the effects of climate and climate change on cold region pavement, as well as other types of geo-structures.