GLAD:全球-地方方法;金融市场预测的解纠缠学习

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2023-11-10 DOI:10.1049/2023/6623718
Humam M. Abdulsahib, Foad Ghaderi
{"title":"GLAD:全球-地方方法;金融市场预测的解纠缠学习","authors":"Humam M. Abdulsahib, Foad Ghaderi","doi":"10.1049/2023/6623718","DOIUrl":null,"url":null,"abstract":"Accurate prediction of financial market trends can have a great impact on maximizing profits and avoiding risks. Conventional methods, e.g., regression or SVR, or end-to-end training approaches, coined as deep learning algorithms, have restraints as a consequence of capturing noisy and unnecessary data. Financial market’s data are composed of stock’s price time series that are correlated, and each time series has both global and local dynamics. Inspired by recent advancements in disentanglement representation learning, in this paper, we present a promising model for predicting financial markets that learn disentangled representations of features and eliminate those features that cause interference. Our model uses the informer encoder to extract features, capturing global–local patterns by using the time and frequency domains, augmenting the clean features with time and frequency-based features, and using the decoder to predict. To be more specific, we adopt contrastive learning in the time and frequency domains to learn both global and local patterns. We argue that our methodology, disentangling and learning the influential factors, holds the potential for more accurate predictions and a better understanding of how time series move and behave. We conducted our experiments using the S&P 500, CSI 300, Hang Seng, and Nikkei 225 stock market datasets to predict their next-day closing prices. The results showed that our model outperformed existing methods in terms of prediction error (mean squared error and mean absolute error), financial risk measurement (volatility and max drawdown), and prediction net curves, which means that it may enhance traders’ profits.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":" 6","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GLAD: Global–Local Approach; Disentanglement Learning for Financial Market Prediction\",\"authors\":\"Humam M. Abdulsahib, Foad Ghaderi\",\"doi\":\"10.1049/2023/6623718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of financial market trends can have a great impact on maximizing profits and avoiding risks. Conventional methods, e.g., regression or SVR, or end-to-end training approaches, coined as deep learning algorithms, have restraints as a consequence of capturing noisy and unnecessary data. Financial market’s data are composed of stock’s price time series that are correlated, and each time series has both global and local dynamics. Inspired by recent advancements in disentanglement representation learning, in this paper, we present a promising model for predicting financial markets that learn disentangled representations of features and eliminate those features that cause interference. Our model uses the informer encoder to extract features, capturing global–local patterns by using the time and frequency domains, augmenting the clean features with time and frequency-based features, and using the decoder to predict. To be more specific, we adopt contrastive learning in the time and frequency domains to learn both global and local patterns. We argue that our methodology, disentangling and learning the influential factors, holds the potential for more accurate predictions and a better understanding of how time series move and behave. We conducted our experiments using the S&P 500, CSI 300, Hang Seng, and Nikkei 225 stock market datasets to predict their next-day closing prices. The results showed that our model outperformed existing methods in terms of prediction error (mean squared error and mean absolute error), financial risk measurement (volatility and max drawdown), and prediction net curves, which means that it may enhance traders’ profits.\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/6623718\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/6623718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确预测金融市场走势对企业实现利润最大化、规避风险具有重要意义。传统方法,如回归或SVR,或端到端训练方法,被称为深度学习算法,由于捕获噪声和不必要的数据而受到限制。金融市场的数据是由相互关联的股票价格时间序列组成的,每个时间序列都具有全局和局部动态。受解纠缠表示学习的最新进展的启发,在本文中,我们提出了一个有前途的模型,用于预测金融市场,该模型可以学习特征的解纠缠表示并消除那些引起干扰的特征。我们的模型使用信息编码器提取特征,通过使用时间和频率域捕获全局-局部模式,使用基于时间和频率的特征增强干净特征,并使用解码器进行预测。更具体地说,我们采用时域和频域的对比学习来学习全局和局部模式。我们认为,我们的方法,解开和学习影响因素,具有更准确的预测和更好地理解时间序列如何移动和表现的潜力。我们使用标准普尔500指数、沪深300指数、恒生指数和日经225指数的股票市场数据集进行了实验,以预测它们第二天的收盘价。结果表明,我们的模型在预测误差(均方误差和平均绝对误差)、金融风险度量(波动率和最大回撤率)和预测净曲线方面优于现有方法,这意味着它可以提高交易者的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GLAD: Global–Local Approach; Disentanglement Learning for Financial Market Prediction
Accurate prediction of financial market trends can have a great impact on maximizing profits and avoiding risks. Conventional methods, e.g., regression or SVR, or end-to-end training approaches, coined as deep learning algorithms, have restraints as a consequence of capturing noisy and unnecessary data. Financial market’s data are composed of stock’s price time series that are correlated, and each time series has both global and local dynamics. Inspired by recent advancements in disentanglement representation learning, in this paper, we present a promising model for predicting financial markets that learn disentangled representations of features and eliminate those features that cause interference. Our model uses the informer encoder to extract features, capturing global–local patterns by using the time and frequency domains, augmenting the clean features with time and frequency-based features, and using the decoder to predict. To be more specific, we adopt contrastive learning in the time and frequency domains to learn both global and local patterns. We argue that our methodology, disentangling and learning the influential factors, holds the potential for more accurate predictions and a better understanding of how time series move and behave. We conducted our experiments using the S&P 500, CSI 300, Hang Seng, and Nikkei 225 stock market datasets to predict their next-day closing prices. The results showed that our model outperformed existing methods in terms of prediction error (mean squared error and mean absolute error), financial risk measurement (volatility and max drawdown), and prediction net curves, which means that it may enhance traders’ profits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G An Improved Lightweight YOLO Algorithm for Recognition of GPS Interference Signals in Civil Aviation Support Vector Machines Based Mutual Interference Mitigation for Millimeter-Wave Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1