Hang Zhang, Guanpeng Dong, Jinfeng Wang, Tong-Lin Zhang, Xiaoyu Meng, Dongyang Yang, Yong Liu, Binbin Lu
{"title":"理解和扩展线性回归框架下的地理探测器模型","authors":"Hang Zhang, Guanpeng Dong, Jinfeng Wang, Tong-Lin Zhang, Xiaoyu Meng, Dongyang Yang, Yong Liu, Binbin Lu","doi":"10.1080/13658816.2023.2266497","DOIUrl":null,"url":null,"abstract":"The Geographical Detector Model (GDM) is a popular statistical toolkit for geographical attribution analysis. Despite the striking resemblance of the q-statistic in GDM to the R-squared in linear regression models, their explicit connection has not yet been established. This study proves that the q-statistic reduces into the R-squared under a linear regression framework. Under linear regression and moderate-to-strong spatial autocorrelation, Monte Carlo simulation results show that the GDM tends to underestimate the importance of variables. In addition, an almost perfect power law relationship is present between the percentage bias and the degree of the spatial autocorrelations, indicating the presence of fast uplifting bias in response to increasing levels of spatial autocorrelations. We propose an integrated approach for variable importance quantification by bringing together the spatial econometrics model and the game theory based-Shapley value method. By applying our proposed methodology to a case study of land desertification in African, it is found human activity tends to affect land desertification both directly and indirectly. However, such effects appear to be underestimated or undistinguished in the classic GDM.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"63 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding and extending the geographical detector model under a linear regression framework\",\"authors\":\"Hang Zhang, Guanpeng Dong, Jinfeng Wang, Tong-Lin Zhang, Xiaoyu Meng, Dongyang Yang, Yong Liu, Binbin Lu\",\"doi\":\"10.1080/13658816.2023.2266497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Geographical Detector Model (GDM) is a popular statistical toolkit for geographical attribution analysis. Despite the striking resemblance of the q-statistic in GDM to the R-squared in linear regression models, their explicit connection has not yet been established. This study proves that the q-statistic reduces into the R-squared under a linear regression framework. Under linear regression and moderate-to-strong spatial autocorrelation, Monte Carlo simulation results show that the GDM tends to underestimate the importance of variables. In addition, an almost perfect power law relationship is present between the percentage bias and the degree of the spatial autocorrelations, indicating the presence of fast uplifting bias in response to increasing levels of spatial autocorrelations. We propose an integrated approach for variable importance quantification by bringing together the spatial econometrics model and the game theory based-Shapley value method. By applying our proposed methodology to a case study of land desertification in African, it is found human activity tends to affect land desertification both directly and indirectly. However, such effects appear to be underestimated or undistinguished in the classic GDM.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2266497\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2266497","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Understanding and extending the geographical detector model under a linear regression framework
The Geographical Detector Model (GDM) is a popular statistical toolkit for geographical attribution analysis. Despite the striking resemblance of the q-statistic in GDM to the R-squared in linear regression models, their explicit connection has not yet been established. This study proves that the q-statistic reduces into the R-squared under a linear regression framework. Under linear regression and moderate-to-strong spatial autocorrelation, Monte Carlo simulation results show that the GDM tends to underestimate the importance of variables. In addition, an almost perfect power law relationship is present between the percentage bias and the degree of the spatial autocorrelations, indicating the presence of fast uplifting bias in response to increasing levels of spatial autocorrelations. We propose an integrated approach for variable importance quantification by bringing together the spatial econometrics model and the game theory based-Shapley value method. By applying our proposed methodology to a case study of land desertification in African, it is found human activity tends to affect land desertification both directly and indirectly. However, such effects appear to be underestimated or undistinguished in the classic GDM.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.