{"title":"基于7nm门逻辑的滑模控制器设计","authors":"Li Yan, Liang Wenbin, Liao Jie, Yu Xian","doi":"10.1166/jno.2023.3440","DOIUrl":null,"url":null,"abstract":"In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC–DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"25 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Sliding Mode Controller Based on 7 nm Gate Logic\",\"authors\":\"Li Yan, Liang Wenbin, Liao Jie, Yu Xian\",\"doi\":\"10.1166/jno.2023.3440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC–DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.\",\"PeriodicalId\":16446,\"journal\":{\"name\":\"Journal of Nanoelectronics and Optoelectronics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoelectronics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jno.2023.3440\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jno.2023.3440","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of Sliding Mode Controller Based on 7 nm Gate Logic
In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC–DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.