Andrés Felipe Calvo-Salcedo, Neil Guerrero-González, José A. Jaramillo-Villegas
{"title":"基于光子结构的下一代无源光网络中多音光源的产生","authors":"Andrés Felipe Calvo-Salcedo, Neil Guerrero-González, José A. Jaramillo-Villegas","doi":"10.15446/ing.investig.98975","DOIUrl":null,"url":null,"abstract":"This study presents the design and simulation of an integrated multi-carrier optical source with a 227 GHz bandwidth for passive optical network (PON) applications. The optical comb generation attained using a photonic structure known as a micro-ring resonator fabricated in silicon nitride (Si3N4) facilitates cost reduction when produced on a large scale. Additionally, the generated optical comb accomplishes non-uniform tones in terms of the optical signal-to-noise ratio (OSNR), which allows for the dynamic assignment of carriers to retainable customers as a function of the data rate and transmission distance requirements. The design and simulation demonstrate the generation of frequency combs with optical carriers in a range of 5-40 tones, an OSNR range of 20-80 dB, and a free spectral range (FSR) of 50-3 610 GHz. To achieve these features, a geometric design of the device is proposed, and its response to variations of input laser parameters is described. In summary, the device uses two optical micro-resonators with radii of 100 and 450 µm and controls the power and the tuning of laser parameters. The proposed method allows generating a deterministic and reliable path to the frequency combs. Finally, the characteristics of the obtained combs are tested to determine their potential use in PON transmissions.","PeriodicalId":21285,"journal":{"name":"Revista Ingenieria E Investigacion","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Tone Optical Source Generation for Applications in Next-Generation Passive Optical Networks using Photonic Structures\",\"authors\":\"Andrés Felipe Calvo-Salcedo, Neil Guerrero-González, José A. Jaramillo-Villegas\",\"doi\":\"10.15446/ing.investig.98975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the design and simulation of an integrated multi-carrier optical source with a 227 GHz bandwidth for passive optical network (PON) applications. The optical comb generation attained using a photonic structure known as a micro-ring resonator fabricated in silicon nitride (Si3N4) facilitates cost reduction when produced on a large scale. Additionally, the generated optical comb accomplishes non-uniform tones in terms of the optical signal-to-noise ratio (OSNR), which allows for the dynamic assignment of carriers to retainable customers as a function of the data rate and transmission distance requirements. The design and simulation demonstrate the generation of frequency combs with optical carriers in a range of 5-40 tones, an OSNR range of 20-80 dB, and a free spectral range (FSR) of 50-3 610 GHz. To achieve these features, a geometric design of the device is proposed, and its response to variations of input laser parameters is described. In summary, the device uses two optical micro-resonators with radii of 100 and 450 µm and controls the power and the tuning of laser parameters. The proposed method allows generating a deterministic and reliable path to the frequency combs. Finally, the characteristics of the obtained combs are tested to determine their potential use in PON transmissions.\",\"PeriodicalId\":21285,\"journal\":{\"name\":\"Revista Ingenieria E Investigacion\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenieria E Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/ing.investig.98975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenieria E Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/ing.investig.98975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Tone Optical Source Generation for Applications in Next-Generation Passive Optical Networks using Photonic Structures
This study presents the design and simulation of an integrated multi-carrier optical source with a 227 GHz bandwidth for passive optical network (PON) applications. The optical comb generation attained using a photonic structure known as a micro-ring resonator fabricated in silicon nitride (Si3N4) facilitates cost reduction when produced on a large scale. Additionally, the generated optical comb accomplishes non-uniform tones in terms of the optical signal-to-noise ratio (OSNR), which allows for the dynamic assignment of carriers to retainable customers as a function of the data rate and transmission distance requirements. The design and simulation demonstrate the generation of frequency combs with optical carriers in a range of 5-40 tones, an OSNR range of 20-80 dB, and a free spectral range (FSR) of 50-3 610 GHz. To achieve these features, a geometric design of the device is proposed, and its response to variations of input laser parameters is described. In summary, the device uses two optical micro-resonators with radii of 100 and 450 µm and controls the power and the tuning of laser parameters. The proposed method allows generating a deterministic and reliable path to the frequency combs. Finally, the characteristics of the obtained combs are tested to determine their potential use in PON transmissions.