Rahul D. Jawarkar, Magdi E. A. Zaki, Sami A. Al-Hussain, Abdullah Yahya Abdullah Alzahrani, Long Chiau Ming, Abdul Samad, Summya Rashid, Suraj Mali, Gehan M. Elossaily
{"title":"机制QSAR分析预测不同杂环作为选择性大麻素2受体抑制剂的结合亲和力","authors":"Rahul D. Jawarkar, Magdi E. A. Zaki, Sami A. Al-Hussain, Abdullah Yahya Abdullah Alzahrani, Long Chiau Ming, Abdul Samad, Summya Rashid, Suraj Mali, Gehan M. Elossaily","doi":"10.1080/16583655.2023.2265104","DOIUrl":null,"url":null,"abstract":"CB2R are fascinating targets for neuropathic pain and mood disorders because of their improved biological characteristics. Experimental data on 1296 cannabinoid-2 receptor inhibitors with different structural properties were used to develop a QSAR model following OECD guidelines. This study selected the best-predicted model (80:20 splitting ratio) with fitting parameters, such as R2:0.78; F:623.6, Internal validation parameters, such as Q2Loo:0.78; CCCcv: 0.87 and external validation parameters, such as R2ext:0.77; Q2F1:0.7730; Q2F2:0.7730; Q2F3:0.76; CCCext:0.87. Following this, another QSAR model was developed by using a 50:50 split ratio for thetraining and the prediction sets, which were then swapped to evaluate the robustness of the built QSAR model by the 50:50 ratio, which also gives a deeper understanding of the chemical space. In addition, we have confirmed the QSAR result with pharmacophore modelling, and supported by molecular docking, MD simulation, MMGBSA and ADME studies. Thus, this work may enable cannabinoid 2 receptor inhibsitor development.","PeriodicalId":17100,"journal":{"name":"Journal of Taibah University for Science","volume":"2 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic QSAR analysis to predict the binding affinity of diverse heterocycles as selective cannabinoid 2 receptor inhibitor\",\"authors\":\"Rahul D. Jawarkar, Magdi E. A. Zaki, Sami A. Al-Hussain, Abdullah Yahya Abdullah Alzahrani, Long Chiau Ming, Abdul Samad, Summya Rashid, Suraj Mali, Gehan M. Elossaily\",\"doi\":\"10.1080/16583655.2023.2265104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CB2R are fascinating targets for neuropathic pain and mood disorders because of their improved biological characteristics. Experimental data on 1296 cannabinoid-2 receptor inhibitors with different structural properties were used to develop a QSAR model following OECD guidelines. This study selected the best-predicted model (80:20 splitting ratio) with fitting parameters, such as R2:0.78; F:623.6, Internal validation parameters, such as Q2Loo:0.78; CCCcv: 0.87 and external validation parameters, such as R2ext:0.77; Q2F1:0.7730; Q2F2:0.7730; Q2F3:0.76; CCCext:0.87. Following this, another QSAR model was developed by using a 50:50 split ratio for thetraining and the prediction sets, which were then swapped to evaluate the robustness of the built QSAR model by the 50:50 ratio, which also gives a deeper understanding of the chemical space. In addition, we have confirmed the QSAR result with pharmacophore modelling, and supported by molecular docking, MD simulation, MMGBSA and ADME studies. Thus, this work may enable cannabinoid 2 receptor inhibsitor development.\",\"PeriodicalId\":17100,\"journal\":{\"name\":\"Journal of Taibah University for Science\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Taibah University for Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16583655.2023.2265104\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Taibah University for Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16583655.2023.2265104","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mechanistic QSAR analysis to predict the binding affinity of diverse heterocycles as selective cannabinoid 2 receptor inhibitor
CB2R are fascinating targets for neuropathic pain and mood disorders because of their improved biological characteristics. Experimental data on 1296 cannabinoid-2 receptor inhibitors with different structural properties were used to develop a QSAR model following OECD guidelines. This study selected the best-predicted model (80:20 splitting ratio) with fitting parameters, such as R2:0.78; F:623.6, Internal validation parameters, such as Q2Loo:0.78; CCCcv: 0.87 and external validation parameters, such as R2ext:0.77; Q2F1:0.7730; Q2F2:0.7730; Q2F3:0.76; CCCext:0.87. Following this, another QSAR model was developed by using a 50:50 split ratio for thetraining and the prediction sets, which were then swapped to evaluate the robustness of the built QSAR model by the 50:50 ratio, which also gives a deeper understanding of the chemical space. In addition, we have confirmed the QSAR result with pharmacophore modelling, and supported by molecular docking, MD simulation, MMGBSA and ADME studies. Thus, this work may enable cannabinoid 2 receptor inhibsitor development.
期刊介绍:
Journal of Taibah University for Science (JTUSCI) is an international scientific journal for the basic sciences. This journal is produced and published by Taibah University, Madinah, Kingdom of Saudi Arabia. The scope of the journal is to publish peer reviewed research papers, short communications, reviews and comments as well as the scientific conference proceedings in a special issue. The emphasis is on biology, geology, chemistry, environmental control, mathematics and statistics, nanotechnology, physics, and related fields of study. The JTUSCI now quarterly publishes four issues (Jan, Apr, Jul and Oct) per year. Submission to the Journal is based on the understanding that the article has not been previously published in any other form and is not considered for publication elsewhere.