{"title":"基于人工神经网络的增强MLP模型在双频螺旋天线散射参数预测中的应用","authors":"Ahmet Uluslu","doi":"10.13052/2023.aces.j.380504","DOIUrl":null,"url":null,"abstract":"Many design optimization problems have problems that seek fast, efficient and reliable based solutions. In such cases, artificial intelligence-based modeling is used to solve costly and complex problems. This study is based on the modeling of a multiband helical antenna using the Latin hypercube sampling (LHS) method using a reduced data enhanced multilayer perceptron (eMLP). The proposed helical antenna is dual-band and has resonance frequencies of 2.4 GHz and 2.75 GHz. The enhanced structure of the artificial neural network (ANN) was tested using 4 different training algorithms and a maximum of 10 different MLP architectures to determine the most suitable model in a simple and quick way. Then, performance comparison with other ANN networks was made to confirm the success of the model. Considering the high cost of antenna simulations, it is clear that the proposed model will save a lot of time. In addition, thanks to the selected sampling model, a wide range of modeling can be done with minimum data. When the target and prediction data are compared, it is seen that these data overlap to a large extent. As a result of the study, it was seen that the ANN modeling and the 125 samples used, were as accurate as an electromagnetic (EM) simulator for other input parameters in a wide range selected.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Neural Network Base Enhanced MLP Model for Scattering Parameter Prediction of Dual-band Helical Antenna\",\"authors\":\"Ahmet Uluslu\",\"doi\":\"10.13052/2023.aces.j.380504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many design optimization problems have problems that seek fast, efficient and reliable based solutions. In such cases, artificial intelligence-based modeling is used to solve costly and complex problems. This study is based on the modeling of a multiband helical antenna using the Latin hypercube sampling (LHS) method using a reduced data enhanced multilayer perceptron (eMLP). The proposed helical antenna is dual-band and has resonance frequencies of 2.4 GHz and 2.75 GHz. The enhanced structure of the artificial neural network (ANN) was tested using 4 different training algorithms and a maximum of 10 different MLP architectures to determine the most suitable model in a simple and quick way. Then, performance comparison with other ANN networks was made to confirm the success of the model. Considering the high cost of antenna simulations, it is clear that the proposed model will save a lot of time. In addition, thanks to the selected sampling model, a wide range of modeling can be done with minimum data. When the target and prediction data are compared, it is seen that these data overlap to a large extent. As a result of the study, it was seen that the ANN modeling and the 125 samples used, were as accurate as an electromagnetic (EM) simulator for other input parameters in a wide range selected.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.380504\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380504","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Application of Artificial Neural Network Base Enhanced MLP Model for Scattering Parameter Prediction of Dual-band Helical Antenna
Many design optimization problems have problems that seek fast, efficient and reliable based solutions. In such cases, artificial intelligence-based modeling is used to solve costly and complex problems. This study is based on the modeling of a multiband helical antenna using the Latin hypercube sampling (LHS) method using a reduced data enhanced multilayer perceptron (eMLP). The proposed helical antenna is dual-band and has resonance frequencies of 2.4 GHz and 2.75 GHz. The enhanced structure of the artificial neural network (ANN) was tested using 4 different training algorithms and a maximum of 10 different MLP architectures to determine the most suitable model in a simple and quick way. Then, performance comparison with other ANN networks was made to confirm the success of the model. Considering the high cost of antenna simulations, it is clear that the proposed model will save a lot of time. In addition, thanks to the selected sampling model, a wide range of modeling can be done with minimum data. When the target and prediction data are compared, it is seen that these data overlap to a large extent. As a result of the study, it was seen that the ANN modeling and the 125 samples used, were as accurate as an electromagnetic (EM) simulator for other input parameters in a wide range selected.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.