{"title":"基于ANN-PSO和MARS的收敛与发散河漫滩复合河道流量估计","authors":"Divyanshu Shekhar, Bhabani Shankar Das, Kamalini Devi, Jnana Ranjan Khuntia, Tapas Karmaker","doi":"10.2166/hydro.2023.145","DOIUrl":null,"url":null,"abstract":"Abstract The discharge estimation in rivers is crucial in implementing flood management techniques and essential flood defence and drainage systems. During the normal flood season, water flows solely in the main channel. During a flood, rivers comprise a main channel and floodplains, collectively called a compound channel. Computing the discharge is challenging in non-prismatic compound channels where the floodplains converge or diverge in a longitudinal direction. Various soft computing techniques have nowadays become popular in the field of water resource engineering to solve these complex problems. This paper uses a hybrid soft computing technique – artificial neural network and particle swarm optimization (ANN–PSO) and multivariate adaptive regression splines (MARS) to model the discharge in non-prismatic compound open channels. The analysis considers nine non-dimensional parameters – bed slope, relative flow depth, relative longitudinal distance, hydraulic radius ratio, angle of convergence or divergence, flow aspect ratio, relative friction factor, and area ratio – as influencing factors. A gamma test is carried out to determine the optimal combination of input variables. The developed MARS model has produced satisfactory results, with a mean absolute percentage error (MAPE) of less than 7% and an R2 value of more than 0.90.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discharge estimation in a compound channel with converging and diverging floodplains using ANN–PSO and MARS\",\"authors\":\"Divyanshu Shekhar, Bhabani Shankar Das, Kamalini Devi, Jnana Ranjan Khuntia, Tapas Karmaker\",\"doi\":\"10.2166/hydro.2023.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The discharge estimation in rivers is crucial in implementing flood management techniques and essential flood defence and drainage systems. During the normal flood season, water flows solely in the main channel. During a flood, rivers comprise a main channel and floodplains, collectively called a compound channel. Computing the discharge is challenging in non-prismatic compound channels where the floodplains converge or diverge in a longitudinal direction. Various soft computing techniques have nowadays become popular in the field of water resource engineering to solve these complex problems. This paper uses a hybrid soft computing technique – artificial neural network and particle swarm optimization (ANN–PSO) and multivariate adaptive regression splines (MARS) to model the discharge in non-prismatic compound open channels. The analysis considers nine non-dimensional parameters – bed slope, relative flow depth, relative longitudinal distance, hydraulic radius ratio, angle of convergence or divergence, flow aspect ratio, relative friction factor, and area ratio – as influencing factors. A gamma test is carried out to determine the optimal combination of input variables. The developed MARS model has produced satisfactory results, with a mean absolute percentage error (MAPE) of less than 7% and an R2 value of more than 0.90.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.145\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discharge estimation in a compound channel with converging and diverging floodplains using ANN–PSO and MARS
Abstract The discharge estimation in rivers is crucial in implementing flood management techniques and essential flood defence and drainage systems. During the normal flood season, water flows solely in the main channel. During a flood, rivers comprise a main channel and floodplains, collectively called a compound channel. Computing the discharge is challenging in non-prismatic compound channels where the floodplains converge or diverge in a longitudinal direction. Various soft computing techniques have nowadays become popular in the field of water resource engineering to solve these complex problems. This paper uses a hybrid soft computing technique – artificial neural network and particle swarm optimization (ANN–PSO) and multivariate adaptive regression splines (MARS) to model the discharge in non-prismatic compound open channels. The analysis considers nine non-dimensional parameters – bed slope, relative flow depth, relative longitudinal distance, hydraulic radius ratio, angle of convergence or divergence, flow aspect ratio, relative friction factor, and area ratio – as influencing factors. A gamma test is carried out to determine the optimal combination of input variables. The developed MARS model has produced satisfactory results, with a mean absolute percentage error (MAPE) of less than 7% and an R2 value of more than 0.90.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.