{"title":"壳聚糖稳定铁纳米颗粒光催化制氢","authors":"Meenal Joshi, Sadhana S. Rayalu","doi":"10.59671/f7ran","DOIUrl":null,"url":null,"abstract":"Metal nonoparticles stabilized by polymers is emerging as a new class of materials having entirely new physico-chemical properties as that of bulk and atom both. Stabilizers play important role in protecting the nanoparticles and also contributes in improvising the overall surface area. Chitosan, a natural polymer is selected as a stabilizer for the synthesis of iron containing nanoparticles. These nonoparticles are thoroughly characterized by using BETsurface area, FTIR, TEM and XPS. TEM image is showing well dispersed nanofibers with average size of 13nm. XPS data supports the formation of Fe2O3 type structure with O1s binding energy at 534.5 eV and Fe 2P3/2 and Fe 2P1/2 binding energies at 712eV and 723.2 eV. BET Surface area value is 36.72m2 /g with pore size of 145.16 and pore volume of 0.1332 cm3 /g. This synthesized nanomaterial was evaluated for photocatalytic hydrogen generation via water splitting reaction. Iron containing nanoparticles are showing excellent photocatalytic activity with hydrogen generation yield of 55.5 mmoles h-1g -1 of photocatalyst. The nanoparticles are magnetically retrievable and hence can be separated effectively from heterogeneous system.","PeriodicalId":13651,"journal":{"name":"Interciencia","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan Stabilised Iron Containing Nanoparticles For Photocatalytic Hydrogen Generation\",\"authors\":\"Meenal Joshi, Sadhana S. Rayalu\",\"doi\":\"10.59671/f7ran\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal nonoparticles stabilized by polymers is emerging as a new class of materials having entirely new physico-chemical properties as that of bulk and atom both. Stabilizers play important role in protecting the nanoparticles and also contributes in improvising the overall surface area. Chitosan, a natural polymer is selected as a stabilizer for the synthesis of iron containing nanoparticles. These nonoparticles are thoroughly characterized by using BETsurface area, FTIR, TEM and XPS. TEM image is showing well dispersed nanofibers with average size of 13nm. XPS data supports the formation of Fe2O3 type structure with O1s binding energy at 534.5 eV and Fe 2P3/2 and Fe 2P1/2 binding energies at 712eV and 723.2 eV. BET Surface area value is 36.72m2 /g with pore size of 145.16 and pore volume of 0.1332 cm3 /g. This synthesized nanomaterial was evaluated for photocatalytic hydrogen generation via water splitting reaction. Iron containing nanoparticles are showing excellent photocatalytic activity with hydrogen generation yield of 55.5 mmoles h-1g -1 of photocatalyst. The nanoparticles are magnetically retrievable and hence can be separated effectively from heterogeneous system.\",\"PeriodicalId\":13651,\"journal\":{\"name\":\"Interciencia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interciencia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59671/f7ran\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59671/f7ran","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Chitosan Stabilised Iron Containing Nanoparticles For Photocatalytic Hydrogen Generation
Metal nonoparticles stabilized by polymers is emerging as a new class of materials having entirely new physico-chemical properties as that of bulk and atom both. Stabilizers play important role in protecting the nanoparticles and also contributes in improvising the overall surface area. Chitosan, a natural polymer is selected as a stabilizer for the synthesis of iron containing nanoparticles. These nonoparticles are thoroughly characterized by using BETsurface area, FTIR, TEM and XPS. TEM image is showing well dispersed nanofibers with average size of 13nm. XPS data supports the formation of Fe2O3 type structure with O1s binding energy at 534.5 eV and Fe 2P3/2 and Fe 2P1/2 binding energies at 712eV and 723.2 eV. BET Surface area value is 36.72m2 /g with pore size of 145.16 and pore volume of 0.1332 cm3 /g. This synthesized nanomaterial was evaluated for photocatalytic hydrogen generation via water splitting reaction. Iron containing nanoparticles are showing excellent photocatalytic activity with hydrogen generation yield of 55.5 mmoles h-1g -1 of photocatalyst. The nanoparticles are magnetically retrievable and hence can be separated effectively from heterogeneous system.
期刊介绍:
Interciencia is the monthly multidisciplinary publication of the INTERCIENCIA Association. It is dedicated to stimulate scientific research, its humanitarian use and the study of its social context, specially in Latin America and the Caribbean and to promote communication between the scientific and technological communities of the Americas.
Interciencia has been published uninterruptedly since 1976. Its Founding Director, Marcel Roche (endocrinologist and sociologist of science) was editor until 2008, and thereafter Miguel Laufer (neurobiologist) has been in charge. It has been included since 1978 in the Science Citation Index and other international indexes, and since 2008 it maintains an open access electronic version with material from 2005 onwards.
The priority areas of the journal, without exclusion of other areas, are Agronomy, Arid Lands, Food and Nutrition, Biotechnology, Ecology and Environment, Energy, Innovation and Technology Transfer, Marine Resources, Non-renewable Resources, Science Education, Science Policy, Study and Sociology of Science, and Tropical Forests.
Interciencia publishes in Spanish, Portuguese and English research and review articles, communications and essays, all of which are subjected to peer review. Additionally, it includes non-refereed sections such as Editorial, Letters to the Editor, Open Town Hall, Book Reviews and Upcoming Events.
All the material submitted to the journal for publication and accepted by the Editorial Committee in view of its quality and pertinence is subjected to review by peer specialists in the corresponding fields of knowledge. Neither the INTERCIENCIA Association, nor the journal or the institutions to which the authors belong carry responsibility for the contents. Signing authors are responsible for the material published under their names.