{"title":"基于机器学习的飞机到达跑道占用时间预测","authors":"Haoran Gao, Yubing Xie, Changjiang Yuan, Xin He, Tiantian Niu","doi":"10.1007/s44196-023-00333-3","DOIUrl":null,"url":null,"abstract":"Abstract Wake re-categorization (RECAT) has been implemented to improve runway capacity, and consequently, aircraft arrival runway occupancy time has become a crucial factor influencing runway capacity. Accurate prediction of the runway occupancy time can assist controllers in determining aircraft separation, thereby enhancing the operational efficiency of the runway. In this study, the GA–PSO algorithm is utilized to optimize the Back Propagation neural network prediction model using Quick access recorder data from various domestic airports, achieving high-precision prediction. Additionally, the SHapley Additive explanation model is applied to quantify the effect of each characteristic parameter on the arrival runway occupancy time, resulting in the prediction of aircraft arrival runway occupancy time. This model can provide a foundation for improving runway operation efficiency and technical support for the design of airport runway and taxiway structure.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"36 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Aircraft Arrival Runway Occupancy Time Based on Machine Learning\",\"authors\":\"Haoran Gao, Yubing Xie, Changjiang Yuan, Xin He, Tiantian Niu\",\"doi\":\"10.1007/s44196-023-00333-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wake re-categorization (RECAT) has been implemented to improve runway capacity, and consequently, aircraft arrival runway occupancy time has become a crucial factor influencing runway capacity. Accurate prediction of the runway occupancy time can assist controllers in determining aircraft separation, thereby enhancing the operational efficiency of the runway. In this study, the GA–PSO algorithm is utilized to optimize the Back Propagation neural network prediction model using Quick access recorder data from various domestic airports, achieving high-precision prediction. Additionally, the SHapley Additive explanation model is applied to quantify the effect of each characteristic parameter on the arrival runway occupancy time, resulting in the prediction of aircraft arrival runway occupancy time. This model can provide a foundation for improving runway operation efficiency and technical support for the design of airport runway and taxiway structure.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00333-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00333-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Aircraft Arrival Runway Occupancy Time Based on Machine Learning
Abstract Wake re-categorization (RECAT) has been implemented to improve runway capacity, and consequently, aircraft arrival runway occupancy time has become a crucial factor influencing runway capacity. Accurate prediction of the runway occupancy time can assist controllers in determining aircraft separation, thereby enhancing the operational efficiency of the runway. In this study, the GA–PSO algorithm is utilized to optimize the Back Propagation neural network prediction model using Quick access recorder data from various domestic airports, achieving high-precision prediction. Additionally, the SHapley Additive explanation model is applied to quantify the effect of each characteristic parameter on the arrival runway occupancy time, resulting in the prediction of aircraft arrival runway occupancy time. This model can provide a foundation for improving runway operation efficiency and technical support for the design of airport runway and taxiway structure.
期刊介绍:
The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics:
-Autonomous reasoning-
Bio-informatics-
Cloud computing-
Condition monitoring-
Data science-
Data mining-
Data visualization-
Decision support systems-
Fault diagnosis-
Intelligent information retrieval-
Human-machine interaction and interfaces-
Image processing-
Internet and networks-
Noise analysis-
Pattern recognition-
Prediction systems-
Power (nuclear) safety systems-
Process and system control-
Real-time systems-
Risk analysis and safety-related issues-
Robotics-
Signal and image processing-
IoT and smart environments-
Systems integration-
System control-
System modelling and optimization-
Telecommunications-
Time series prediction-
Warning systems-
Virtual reality-
Web intelligence-
Deep learning