{"title":"柠檬酸对聚l-丙交酯-b-聚乙二醇-b-聚l-丙交酯/热塑性淀粉共混物热、相形态和力学性能的影响","authors":"Yaowalak Srisuwan, Prasong Srihanam, Theeraphol Phromsopha, Yodthong Baimark","doi":"10.1515/epoly-2023-0057","DOIUrl":null,"url":null,"abstract":"Abstract This work investigated the thermal, morphological, and tensile properties of poly( l -lactide)- b -poly(ethylene glycol)- b -poly( l -lactide) (PLLA-PEG-PLLA)/thermoplastic starch (TPS) blends with 3 wt% citric acid (CA) treatment of TPS. The blends with PLLA-PEG-PLLA/CA-TPS ratios of 100/0, 90/10, 80/20, and 60/40 (w/w) were investigated and compared with PLLA-PEG-PLLA/CA-free TPS blends. Crystallizability of the blends decreased and thermal stability increased as the TPS content increased. The thermal stability of the blends was found to improve after CA treatment of TPS. The PLLA-PEG-PLLA/CA-TPS blends showed better phase compatibility than those of the PLLA-PEG-PLLA/CA-free TPS blends. The tensile properties of the blends were improved by CA treatment of TPS. In conclusion, improvement in thermal stability, phase compatibility, and tensile properties of the PLLA-PEG-PLLA/TPS blends was obtained by CA treatment of TPS. The resulting PLLA-PEG-PLLA/CA-TPS blends could potentially be used to prepare biodegradable and flexible bioplastics.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"23 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of citric acid on thermal, phase morphological, and mechanical properties of poly(l-lactide)-<i>b</i>-poly(ethylene glycol)-<i>b</i>-poly(l-lactide)/thermoplastic starch blends\",\"authors\":\"Yaowalak Srisuwan, Prasong Srihanam, Theeraphol Phromsopha, Yodthong Baimark\",\"doi\":\"10.1515/epoly-2023-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work investigated the thermal, morphological, and tensile properties of poly( l -lactide)- b -poly(ethylene glycol)- b -poly( l -lactide) (PLLA-PEG-PLLA)/thermoplastic starch (TPS) blends with 3 wt% citric acid (CA) treatment of TPS. The blends with PLLA-PEG-PLLA/CA-TPS ratios of 100/0, 90/10, 80/20, and 60/40 (w/w) were investigated and compared with PLLA-PEG-PLLA/CA-free TPS blends. Crystallizability of the blends decreased and thermal stability increased as the TPS content increased. The thermal stability of the blends was found to improve after CA treatment of TPS. The PLLA-PEG-PLLA/CA-TPS blends showed better phase compatibility than those of the PLLA-PEG-PLLA/CA-free TPS blends. The tensile properties of the blends were improved by CA treatment of TPS. In conclusion, improvement in thermal stability, phase compatibility, and tensile properties of the PLLA-PEG-PLLA/TPS blends was obtained by CA treatment of TPS. The resulting PLLA-PEG-PLLA/CA-TPS blends could potentially be used to prepare biodegradable and flexible bioplastics.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0057\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0057","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of citric acid on thermal, phase morphological, and mechanical properties of poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide)/thermoplastic starch blends
Abstract This work investigated the thermal, morphological, and tensile properties of poly( l -lactide)- b -poly(ethylene glycol)- b -poly( l -lactide) (PLLA-PEG-PLLA)/thermoplastic starch (TPS) blends with 3 wt% citric acid (CA) treatment of TPS. The blends with PLLA-PEG-PLLA/CA-TPS ratios of 100/0, 90/10, 80/20, and 60/40 (w/w) were investigated and compared with PLLA-PEG-PLLA/CA-free TPS blends. Crystallizability of the blends decreased and thermal stability increased as the TPS content increased. The thermal stability of the blends was found to improve after CA treatment of TPS. The PLLA-PEG-PLLA/CA-TPS blends showed better phase compatibility than those of the PLLA-PEG-PLLA/CA-free TPS blends. The tensile properties of the blends were improved by CA treatment of TPS. In conclusion, improvement in thermal stability, phase compatibility, and tensile properties of the PLLA-PEG-PLLA/TPS blends was obtained by CA treatment of TPS. The resulting PLLA-PEG-PLLA/CA-TPS blends could potentially be used to prepare biodegradable and flexible bioplastics.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.